Which equation fits? (Differential Equation)

Calculus Level 2

e y = d x d y ( 1 + 4 x 2 ) e 2 x 2 \large e^y = \frac{dx}{dy}\left(1+4x^2\right)e^{2x^{2}}

Given the equation above, what could a possible y y be?

y = 1 x + 2 x y= \frac 1x + 2x y = ln x + 2 x 2 y= \ln x + 2x^2 y = 1 x + 2 x 3 y= \frac 1x + 2x^3 y = ln ( 2 x ) + x 2 y= \ln (2x) + x^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

e y = d x d y ( 1 + 4 x 2 ) e 2 x 2 e y d y = ( 1 + 4 x 2 ) e 2 x 2 d x e y d y = ( 1 + 4 x 2 ) e 2 x 2 d x Note that d d x x e 2 x 2 = ( 1 + 4 x 2 ) e 2 x 2 e y = x e 2 x 2 + C where C is the constant of integration. e y = e ln x + 2 x 2 + C For C = 0 y = ln x + 2 x 2 \begin{aligned} e^y & = \frac {dx}{dy}\left(1+4x^2\right)e^{2x^2} \\ e^y\ dy & = \left(1+4x^2\right)e^{2x^2}\ dx \\ \int e^y\ dy & = \int \left(1+4x^2\right)e^{2x^2}\ dx & \small \color{#3D99F6} \text{Note that } \frac d{dx} xe^{2x^2} = \left(1+4x^2\right)e^{2x^2} \\ \implies e^y & = xe^{2x^2} + \color{#3D99F6} C & \small \color{#3D99F6} \text{where } C \text{ is the constant of integration.} \\ e^y & = e^{\ln x+2x^2} + C & \small \color{#3D99F6} \text{For }C = 0 \\ \implies y & = \boxed{\ln x + 2x^2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...