Which Formula Should I Apply? (Part 2)

Geometry Level 3

Evaluate

241 2 cot 2 ( 9 ) + 241 2 cot 2 ( 2 7 ) + 241 2 cot 2 ( 4 5 ) + 241 2 cot 2 ( 6 3 ) + 241 2 cot 2 ( 8 1 ) . \frac{241}{2-\cot^{2} (9^{\circ})}+\frac{241}{2-\cot^{2} (27^{\circ})}+\frac{241}{2-\cot^{2} (45^{\circ})}\\ +\frac{241}{2-\cot^{2} (63^{\circ})}+\frac{241}{2-\cot^{2} (81^{\circ})} .


The answer is 365.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 14, 2014

241 2 cot 2 9 + 241 2 cot 2 2 7 + 241 2 cot 2 4 5 + 241 2 cot 2 6 3 + 241 2 cot 2 8 1 = 241 2 cot 2 9 + 241 2 cot 2 8 1 + 241 2 cot 2 2 7 + 241 2 cot 2 6 3 + 241 = 241 ( sin 2 9 2 sin 2 9 cos 2 9 + sin 2 8 1 2 sin 2 8 1 cos 2 8 1 + sin 2 2 7 2 sin 2 2 7 cos 2 2 7 + sin 2 6 3 2 sin 2 6 3 cos 2 6 3 + 1 ) = 241 ( sin 2 9 3 sin 2 9 1 + sin 2 8 1 3 sin 2 8 1 1 + sin 2 2 7 3 sin 2 2 7 1 + sin 2 6 3 3 sin 2 6 3 1 + 1 ) = 241 ( sin 2 9 3 sin 2 9 1 + cos 2 9 3 cos 2 9 1 + sin 2 2 7 3 sin 2 2 7 1 + cos 2 2 7 3 cos 2 2 7 1 + 1 ) = 241 ( 3 sin 2 9 cos 2 9 sin 2 9 + 3 sin 2 9 cos 2 9 cos 2 9 9 sin 2 9 cos 2 9 3 sin 2 9 3 cos 2 9 + 1 + . . . + 1 ) = 241 ( 6 sin 2 9 cos 2 9 1 9 sin 2 9 cos 2 9 2 + 6 sin 2 2 7 cos 2 2 7 1 9 sin 2 2 7 cos 2 2 7 2 + 1 ) = 241 ( 6 sin 2 1 8 4 9 sin 2 1 8 8 + 6 sin 2 5 4 4 9 sin 2 5 4 8 + 1 ) = 241 ( 6 ( 1 cos 3 6 2 ) 4 9 ( 1 cos 3 6 2 ) 8 + 6 ( 1 cos 10 8 2 ) 4 9 ( 1 cos 10 8 2 ) 8 + 1 ) = 241 ( 6 cos 3 6 + 2 9 cos 3 6 + 7 + 6 cos 10 8 + 2 9 cos 10 8 + 7 + 1 ) = 241 ( 108 cos 3 6 cos 10 8 + 60 ( cos 3 6 + cos 10 8 ) + 28 81 cos 3 6 cos 10 8 + 63 ( cos 3 6 + cos 10 8 ) + 49 + 1 ) See Note = 241 ( 108 ( 1 4 ) + 60 ( 1 2 ) + 28 81 ( 1 4 ) + 63 ( 1 2 ) + 49 + 1 ) = 241 ( 31 60.25 + 1 ) = 365 \color{#3D99F6}{\frac{241}{2-\cot^2{9^\circ}}} + \color{#D61F06}{\frac{241}{2-\cot^2{27^\circ}}} + \frac{241}{2-\cot^2{45^\circ}} + \color{#3D99F6}{\frac{241}{2-\cot^2 {63^ \circ }}} + \color{#D61F06}{\frac{241}{2-\cot^2{81^\circ}}} \\ = \color{#3D99F6}{\frac{241}{2-\cot^2{9^\circ}} + \frac{241}{2-\cot^2{81^\circ}}} + \color{#D61F06}{\frac{241}{2-\cot^2{27^\circ}} + \frac{241}{2-\cot^2 {63^ \circ }}} + 241 \\ = 241 \left(\color{#3D99F6}{\frac{\sin^2{9^\circ}}{2\sin^2{9^\circ}-\cos^2{9^\circ}} + \frac{\sin^2{81^\circ}}{2\sin^2{81^\circ}-\cos^2{81^\circ}}} + \color{#D61F06}{\frac{\sin^2{27^\circ}}{2\sin^2{27^\circ}-\cos^2{27^\circ}} + \frac{\sin^2{63^\circ}}{2\sin^2{63^\circ}-\cos^2{63^\circ}}} + 1 \right) \\ = 241 \left(\frac{\sin^2{9^\circ}}{3\sin^2{9^\circ}-1} + \color{#3D99F6}{\frac{\sin^2{81 ^\circ}}{3\sin^2{81^\circ}-1}} +\frac{\sin^2{27^\circ}}{3\sin^2{27^\circ}-1} + \color{#D61F06}{\frac{\sin^2{63^\circ}}{3\sin^2{63^\circ}-1}} + 1 \right) \\ = 241 \left(\frac{\sin^2{9^\circ}}{3\sin^2{9^\circ}-1} + \color{#3D99F6}{\frac{ \cos^2 {9^\circ}}{3\cos^2{9^\circ}-1}} + \frac{\sin^2{27^\circ}}{3\sin^2{27^\circ}-1} + \color{#D61F06}{\frac{\cos^2{27^\circ}}{3\cos^2{27^\circ}-1}} + 1 \right) \\ = 241 \left( \frac{3\sin^2{9^\circ}\cos^2{9^\circ} - \sin^2{9^\circ} + 3\sin^2 {9^\circ}\cos^2{9^\circ} - \cos^2{9^\circ}} {9\sin^2{9^\circ} \cos^2{9^\circ} - 3\sin^2{9^\circ} - 3\cos^2{9^\circ} + 1} +...+ 1 \right) \\ = 241 \left( \frac{6 \sin^2{9^\circ}\cos^2{9^\circ} - 1} {9\sin^2{9^\circ} \cos^2{9^\circ} - 2} +\frac{6 \sin^2{27^\circ}\cos^2{27^\circ} - 1} {9\sin^2{27^\circ} \cos^2{27^\circ} - 2} + 1 \right) \\ = 241 \left( \frac{6 \sin^2{18^\circ} - 4} {9\sin^2{18^\circ} - 8} +\frac{6 \sin^2{54^\circ} - 4} {9\sin^2{54^\circ} - 8} + 1 \right) \\ = 241 \left( \frac{6 \left(\frac{1-\cos{36^\circ}}{2} \right) - 4} {9\left(\frac{1-\cos{36^\circ}}{2} \right) - 8} +\frac{6 \left(\frac{1-\cos{108^\circ}}{2} \right) - 4} {9\left(\frac{1-\cos{108^\circ}}{2} \right) - 8} + 1 \right) \\ = 241 \left( \frac{6 \cos{36^\circ}+2} {9\cos{36^\circ} + 7} +\frac{6 \cos{108^\circ}+2} {9\cos{108^\circ} + 7} + 1 \right) \\ = 241 \left( \frac{108 \color{#3D99F6} {\cos{36^\circ}\cos{108^\circ}} + 60 \color{#3D99F6}{(\cos{36^\circ} + \cos{108^\circ} )} +28} {81 \color{#3D99F6}{ \cos{36^ \circ} \cos {108 ^\circ}} + 63 \color{#3D99F6} {(\cos{36^\circ} + \cos{108^\circ})}+49 } + 1 \right) \quad \quad \color{#3D99F6}{\text {See Note}} \\ = 241 \left( \frac{108 \color{#3D99F6} {(-\frac{1}{4})} + 60 \color{#3D99F6}{(\frac{1}{2} )} +28} {81 \color{#3D99F6} {(-\frac{1}{4})} + 63 \color{#3D99F6} {(\frac{1}{2})}+49 } + 1 \right) = 241 \left( \frac{31} {60.25 } + 1 \right) = \boxed{365}

Note: \color{#3D99F6}{\text{Note:}}

We note that z 5 = e 2 k π 5 = e 36 k = 1 z^5 = e^{\frac{2k\pi}{5}} = e^{36k^\circ} = 1 are the 5 t h 5^{th} roots of unity. From Argand's diagram, we have:

{ cos 3 6 + cos 10 8 = 1 2 . . . ( 1 ) cos 7 2 + cos 14 4 = 1 2 . . . ( 2 ) \begin{cases} \cos{36^\circ} + \cos{108^\circ} = \frac{1}{2} & ...(1) \\ \cos{72^\circ} + \cos{144^\circ} = -\frac{1}{2} & ...(2) \end{cases}

( 2 ) : cos 7 2 + 2 cos 2 7 2 1 = 1 2 4 cos 2 7 2 + 2 cos 7 2 1 = 0 \begin{aligned} (2): \quad \cos{72^\circ} + 2\cos^2{72^\circ} - 1 & = -\frac{1}{2} \\ 4\cos^2{72^\circ} + 2\cos{72^\circ} - 1 & = 0 \end{aligned}

cos 7 2 = 5 1 4 2 cos 2 3 6 1 = 5 1 4 cos 2 3 6 = 5 + 3 8 = 2 5 + 6 16 = ( 5 + 1 ) 2 16 cos 3 6 = 5 + 1 4 \begin{aligned} \Rightarrow \cos{72^\circ} & = \frac{\sqrt{5}-1}{4} \\ \Rightarrow 2\cos^2{36^\circ} - 1 & = \frac{\sqrt{5}-1}{4} \\ \cos^2{36^\circ} & = \frac{\sqrt{5}+3}{8} = \frac{2 \sqrt{5} +6}{16} = \frac{(\sqrt{5}+1)^2}{16} \\ \Rightarrow \cos{36^\circ} & = \frac{\sqrt{5}+1}{4} \end{aligned}

( 1 ) : cos 10 8 = 1 2 cos 3 6 = 1 2 5 + 1 4 = 1 5 4 \begin{aligned} (1): \quad \cos{108^\circ} & = \frac{1}{2} - \cos{36^\circ} = \frac{1}{2} - \frac{\sqrt{5}+1}{4} = \frac{1 - \sqrt{5}}{4} \end{aligned}

cos 3 6 cos 10 8 = 1 5 4 × 5 + 1 4 = 1 4 \begin{aligned} \Rightarrow \cos{36^\circ} \cos{108^\circ} & = \frac{1 - \sqrt{5}}{4} \times \frac{\sqrt{5}+1}{4} = - \frac{1}{4} \end{aligned}

@Chew-Seong Cheong , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Calvin Lin Staff - 5 years, 10 months ago

can you explain how you went from the 7th line to the 8th line. i thought you used the double angle formula on 6(sin9cos9)^2 - 1 in the 7th line but if that's the case, i don't see how the constant term can change to -4 in the following line. did you apply some other trick? thanks!!!

Willia Chang - 4 years, 12 months ago

Log in to reply

There is no trick. Write the calculation out.

Hint: sin θ cos θ = 1 2 sin 2 θ \sin \theta \cos \theta = \frac{1}{2} \sin 2 \theta .

Calvin Lin Staff - 4 years, 12 months ago

Log in to reply

OH...i get it now, sorry i simplified the numerator and found that it didn't match the next line when i should have simplified numerator and denominator and change the fractional coefficients into integers. that way, i'll get the same form as in line 8. thanks for the help!!!!!!!

Willia Chang - 4 years, 12 months ago

can be solved in a much easier way if you use eulers identity, this corresponds to cos(10x)=0 which gives the roots as (2 n-1) pi/20 where n varies from 1 to 10

subharthi chowdhuri - 6 years, 6 months ago
汶良 林
Mar 18, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...