Which Formula Should I Apply?

Geometry Level 2

Find the value of E = tan 2 π 40 + tan 2 3 π 40 + tan 2 5 π 40 + + tan 2 19 π 40 . E=\tan^2{\dfrac{\pi}{40}}+\tan^2{\dfrac{3\pi}{40}}+\tan^2{\dfrac{5\pi}{40}}+\cdots+\tan^2{\dfrac{19\pi}{40}}.


The answer is 190.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dhruva Patil
Dec 12, 2014

E = tan 2 π 40 + tan 2 3 π 40 + tan 2 5 π 40 + tan 2 7 π 40 + . . . tan 2 19 π 40 { 10 t e r m s } E = ( sec 2 π 40 1 ) + ( sec 2 3 π 40 1 ) + ( sec 2 5 π 40 1 ) + ( sec 2 7 π 40 1 ) + . . . E = 1 cos 2 π 40 + 1 cos 2 3 π 40 + 1 cos 2 5 π 40 + 1 cos 2 7 π 40 + . . . 10 E = ( 1 cos 2 π 40 + 1 sin 2 ( π 2 19 π 40 ) ) + ( 1 cos 2 3 π 40 + 1 sin 2 ( π 2 17 π 40 ) ) + . . . 10 E = 4 × ( sin 2 π 40 + cos 2 π 40 ( 2 sin π 40 cos π 40 ) 2 ) + 4 × ( sin 2 3 π 40 + cos 2 3 π 40 ( 2 sin 3 π 40 cos 3 π 40 ) 2 ) + . . . 10 E = 4 × ( 1 sin 2 π 20 + 1 sin 2 3 π 20 + 1 sin 2 5 π 20 + 1 sin 2 7 π 20 + 1 sin 2 9 π 20 ) 10 E = 4 × ( ( 1 sin 2 π 20 + 1 cos 2 ( π 2 9 π 20 ) ) + ( 1 sin 2 3 π 20 + 1 cos 2 ( π 2 7 π 20 ) ) + 1 sin 2 5 π 20 ) 10 E = 16 ( 1 sin 2 π 10 + 1 sin 2 3 π 10 ) + 8 10 { sin π 10 = cos 2 π 5 = 5 1 4 , sin 3 π 10 = cos π 5 = 5 + 1 4 } E = 16 × 12 2 E = 190 E=\displaystyle\tan ^{ 2 }{ \frac { \pi }{ 40 } } +\tan ^{ 2 }{ \frac { 3\pi }{ 40 } } +\tan ^{ 2 }{ \frac { 5\pi }{ 40 } } +\tan ^{ 2 }{ \frac { 7\pi }{ 40 } } +...\tan ^{ 2 }{ \frac { 19\pi }{ 40 } } \quad \{ 10\quad terms\} \\ E=\displaystyle(\sec ^{ 2 }{ \frac { \pi }{ 40 } } -1)+(\sec ^{ 2 }{ \frac { 3\pi }{ 40 } } -1)+(\sec ^{ 2 }{ \frac { 5\pi }{ 40 } } -1)+(\sec ^{ 2 }{ \frac { 7\pi }{ 40 } } -1)+...\\ E=\displaystyle \frac { 1 }{ \cos ^{ 2 }{ \frac { \pi }{ 40 } } } +\frac { 1 }{ \cos ^{ 2 }{ \frac { 3\pi }{ 40 } } } +\frac { 1 }{ \cos ^{ 2 }{ \frac { 5\pi }{ 40 } } } +\frac { 1 }{ \cos ^{ 2 }{ \frac { 7\pi }{ 40 } } } +...-10\\ E=\displaystyle(\frac { 1 }{ \cos ^{ 2 }{ \frac { \pi }{ 40 } } } +\frac { 1 }{ \sin ^{ 2 }{ (\frac { \pi }{ 2 } -\frac { 19\pi }{ 40 } ) } } )+(\frac { 1 }{ \cos ^{ 2 }{ \frac { 3\pi }{ 40 } } } +\frac { 1 }{ \sin ^{ 2 }{ (\frac { \pi }{ 2 } -\frac { 17\pi }{ 40 } ) } } )+...-10\\ E=\displaystyle4\times (\frac { \sin ^{ 2 }{ \frac { \pi }{ 40 } } +\cos ^{ 2 }{ \frac { \pi }{ 40 } } }{ { (2\sin { \frac { \pi }{ 40 } } \cos { \frac { \pi }{ 40 } } ) }^{ 2 } } )+4\times (\frac { \sin ^{ 2 }{ \frac { 3\pi }{ 40 } } +\cos ^{ 2 }{ \frac { 3\pi }{ 40 } } }{ { (2\sin { \frac { 3\pi }{ 40 } } \cos { \frac { 3\pi }{ 40 } } ) }^{ 2 } } )+...-10\\ E=\displaystyle4\times (\frac { 1 }{ \sin ^{ 2 }{ \frac { \pi }{ 20 } } } +\frac { 1 }{ \sin ^{ 2 }{ \frac { 3\pi }{ 20 } } } +\frac { 1 }{ \sin ^{ 2 }{ \frac { 5\pi }{ 20 } } } +\frac { 1 }{ \sin ^{ 2 }{ \frac { 7\pi }{ 20 } } } +\frac { 1 }{ \sin ^{ 2 }{ \frac { 9\pi }{ 20 } } } )-10\\ E=\displaystyle4\times ((\frac { 1 }{ \sin ^{ 2 }{ \frac { \pi }{ 20 } } } +\frac { 1 }{ \cos ^{ 2 }{ (\frac { \pi }{ 2 } -\frac { 9\pi }{ 20 } ) } } )+(\frac { 1 }{ \sin ^{ 2 }{ \frac { 3\pi }{ 20 } } } +\frac { 1 }{ \cos ^{ 2 }{ (\frac { \pi }{ 2 } -\frac { 7\pi }{ 20 } ) } } )+\frac { 1 }{ \sin ^{ 2 }{ \frac { 5\pi }{ 20 } } } )-10\\ E=\displaystyle16(\frac { 1 }{ \sin ^{ 2 }{ \frac { \pi }{ 10 } } } +\frac { 1 }{ \sin ^{ 2 }{ \frac { 3\pi }{ 10 } } } )+8-10\quad \\ \displaystyle\{ \sin { \frac { \pi }{ 10 } } =\cos { \frac { 2\pi }{ 5 } } =\frac { \sqrt { 5 } -1 }{ 4 } ,\sin { \frac { 3\pi }{ 10 } } =\cos { \frac { \pi }{ 5 } } =\frac { \sqrt { 5 } +1 }{ 4 } \} \\ E=16\times 12-2\\ E=\boxed { 190 } \\

80 is the product of a power of 2 and distinct Fermat primes, so trigonometric functions of 2 n π / 80 = n π / 40 2n\pi/80=n\pi/40 can be evaluated. I did this problem this way.

bobby jim - 6 years, 5 months ago

Log in to reply

Can you add more details about how you made use of this fact?

Calvin Lin Staff - 6 years, 4 months ago

Exactly did the same!!!

Rudresh Tomar - 6 years, 6 months ago

@Dhruva Patil Just a suggestion,if you change \frac to \dfrac,your solution would be a bit more clear.Here is an exmaple, 1 sin 2 7 π 20 , \frac{1}{\sin^2{\frac{7\pi}{20}}}, 1 sin 2 7 π 20 \dfrac{1}{\sin^2{\dfrac{7\pi}{20}}} .

Adarsh Kumar - 6 years, 6 months ago

exactly the same!

Asim Das - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...