Find the value of E = tan 2 4 0 π + tan 2 4 0 3 π + tan 2 4 0 5 π + ⋯ + tan 2 4 0 1 9 π .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
80 is the product of a power of 2 and distinct Fermat primes, so trigonometric functions of 2 n π / 8 0 = n π / 4 0 can be evaluated. I did this problem this way.
Log in to reply
Can you add more details about how you made use of this fact?
Exactly did the same!!!
@Dhruva Patil Just a suggestion,if you change \frac to \dfrac,your solution would be a bit more clear.Here is an exmaple, sin 2 2 0 7 π 1 , sin 2 2 0 7 π 1 .
exactly the same!
Problem Loading...
Note Loading...
Set Loading...
E = tan 2 4 0 π + tan 2 4 0 3 π + tan 2 4 0 5 π + tan 2 4 0 7 π + . . . tan 2 4 0 1 9 π { 1 0 t e r m s } E = ( sec 2 4 0 π − 1 ) + ( sec 2 4 0 3 π − 1 ) + ( sec 2 4 0 5 π − 1 ) + ( sec 2 4 0 7 π − 1 ) + . . . E = cos 2 4 0 π 1 + cos 2 4 0 3 π 1 + cos 2 4 0 5 π 1 + cos 2 4 0 7 π 1 + . . . − 1 0 E = ( cos 2 4 0 π 1 + sin 2 ( 2 π − 4 0 1 9 π ) 1 ) + ( cos 2 4 0 3 π 1 + sin 2 ( 2 π − 4 0 1 7 π ) 1 ) + . . . − 1 0 E = 4 × ( ( 2 sin 4 0 π cos 4 0 π ) 2 sin 2 4 0 π + cos 2 4 0 π ) + 4 × ( ( 2 sin 4 0 3 π cos 4 0 3 π ) 2 sin 2 4 0 3 π + cos 2 4 0 3 π ) + . . . − 1 0 E = 4 × ( sin 2 2 0 π 1 + sin 2 2 0 3 π 1 + sin 2 2 0 5 π 1 + sin 2 2 0 7 π 1 + sin 2 2 0 9 π 1 ) − 1 0 E = 4 × ( ( sin 2 2 0 π 1 + cos 2 ( 2 π − 2 0 9 π ) 1 ) + ( sin 2 2 0 3 π 1 + cos 2 ( 2 π − 2 0 7 π ) 1 ) + sin 2 2 0 5 π 1 ) − 1 0 E = 1 6 ( sin 2 1 0 π 1 + sin 2 1 0 3 π 1 ) + 8 − 1 0 { sin 1 0 π = cos 5 2 π = 4 5 − 1 , sin 1 0 3 π = cos 5 π = 4 5 + 1 } E = 1 6 × 1 2 − 2 E = 1 9 0