Which inequality?

Algebra Level 4

If x 1 , x 2 , x 3 , , x n x_1,~x_2,~x_3,\dots,x_n are n n non-zero real numbers such ( x 1 2 + x 2 2 + x 3 2 + + x n 1 2 ) ( x 2 2 + x 3 2 + x 4 2 + + x n 2 ) ( x 1 x 2 + x 2 x 3 + x 3 x 4 + + x n 1 x n ) 2 (x_1^2+x_2^2+x_3^2+\dots+x_{n-1}^2)(x_2^2+x_3^2+x_4^2+\dots+x_n^2)\leq(x_1x_2+x_2x_3+x_3x_4+\dots+x_{n-1}x_n)^2 then x 1 , x 2 , x 3 , , x n x_1,~x_2,~x_3,\dots,x_n are in

Note :
- AP denotes an arithmetic progression.
- AGP denotes an arithmetic geometric progression.
- GP denotes an geometric progression.
- HP denotes an harmonic progression.

None of the others GP HP AP AGP

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravi Dwivedi
Jul 13, 2015

Cauchy Schwarz inequality implies ( x 1 2 + x 2 2 + x 3 2 + + x n 1 2 ) ( x 2 2 + x 3 2 + x 4 2 + + x n 2 ) ( x 1 x 2 + x 2 x 3 + x 3 x 4 + + x n 1 x n ) 2 (x_1^2+x_2^2+x_3^2+\dots+x_{n-1}^2)(x_2^2+x_3^2+x_4^2+\dots+x_n^2)\geq(x_1x_2+x_2x_3+x_3x_4+\dots+x_{n-1}x_n)^2 But the given is

( x 1 2 + x 2 2 + x 3 2 + + x n 1 2 ) ( x 2 2 + x 3 2 + x 4 2 + + x n 2 ) ( x 1 x 2 + x 2 x 3 + x 3 x 4 + + x n 1 x n ) 2 (x_1^2+x_2^2+x_3^2+\dots+x_{n-1}^2)(x_2^2+x_3^2+x_4^2+\dots+x_n^2)\leq(x_1x_2+x_2x_3+x_3x_4+\dots+x_{n-1}x_n)^2

The only possibility is ( x 1 2 + x 2 2 + x 3 2 + + x n 1 2 ) ( x 2 2 + x 3 2 + x 4 2 + + x n 2 ) = ( x 1 x 2 + x 2 x 3 + x 3 x 4 + + x n 1 x n ) 2 (x_1^2+x_2^2+x_3^2+\dots+x_{n-1}^2)(x_2^2+x_3^2+x_4^2+\dots+x_n^2)=(x_1x_2+x_2x_3+x_3x_4+\dots+x_{n-1}x_n)^2

Equality holds when x 1 x 2 = x 2 x 3 = x 3 x 4 = . . . = x n 1 x n = r \frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=...=\frac{x_{n-1}}{x_n}=r

x 1 , x 2 , . . . x n x_{1},x_{2},...x_{n} are in G.P.

This r r is the common ratio of this G.P.

Moderator note:

Good approach. Observing that we have the equality case of an inequality, gives us a ton more information.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...