Which is bigger?

Algebra Level 1

x = a + b + c , y = a 3 b c + b 3 c a + c 3 a b x = a+b+c, \qquad y = \frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab}

If a , b , c a,b,c are positive real numbers, which is bigger, x x or y ? y?

x y x \ge y always y x y \ge x always They are always equal It depends on a , b , c a,b,c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

P C
May 4, 2016

Using AM-GM we have a 3 b c + b + c 3 a \frac{a^3}{bc}+b+c\geq 3a b 3 a c + a + c 3 b \frac{b^3}{ac}+a+c\geq 3b c 3 a b + a + b 3 c \frac{c^3}{ab}+a+b\geq 3c Combine all the inequalities and we get y + 2 x 3 x y+2x\geq 3x y x \Leftrightarrow y\geq x So the answer is " y x y\geq x always"

Good solution

Chew-Seong Cheong - 5 years, 1 month ago

Beautiful ❤️❤️❤️❤️😉

Hrithik Ravi - 3 years, 10 months ago

Elegant solution

Ojas Singh Malhi - 3 years, 8 months ago
Chris Galanis
May 9, 2016

Let's prove this using Muirhead's Inequality...

Let y x y \ge x a b c y a b c x a b c ( a 3 b c + b 3 c a + c 3 c a ) a b c ( a + b + c ) a 4 + b 4 + c 4 a 2 b c + a b 2 c + a b c 2 s y m a 4 s y m a 2 b c M ( 4 , 0 , 0 ) M ( 2 , 1 , 1 ) \begin{aligned} \Rightarrow abc\cdot y &\ge abc\cdot x \\ \Rightarrow abc \bigg(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ca} \bigg) &\ge abc(a+b+c) \\ \Rightarrow a^4 + b^4 + c^4 &\ge a^2bc+ab^2c+abc^2 \\ \Rightarrow \sum_{sym} a^4 &\ge \sum_{sym} a^2bc \\ \Rightarrow M(4,0,0) &\ge M(2,1,1) \end{aligned} which is true since 4,0,0 majorizes 2,1,1. Thus our first guess that y x y \ge x is correct.

Be careful to not assume what you want to prove. You don't have to rewrite everything: if you use biconditional arrows between the steps, the proof will still make sense.

Toby M - 1 month, 1 week ago
展豪 張
May 4, 2016

WLOG, let a b c a\leq b\leq c
Then by rearrangement inequality we have
y = a 3 b c + b 3 c a + c 3 a b y=\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}
a 3 c a + b 3 a b + c 3 b c \geq\dfrac{a^3}{ca}+\dfrac{b^3}{ab}+\dfrac{c^3}{bc}
= a 2 c + b 2 a + c 2 b =\dfrac{a^2}c+\dfrac{b^2}a+\dfrac{c^2}b
a 2 a + b 2 b + c 2 c \geq\dfrac{a^2}a+\dfrac{b^2}b+\dfrac{c^2}c
= a + b + c =a+b+c
= x =x
From the equality case of rearrangement inequality, y = x y=x when a = b = c a=b=c



Mihaly Hanics
Mar 17, 2018

I saw there are nice solutions to this down the comments, but I think most of us came to this as on the page of Muirhead's Inequality, so I'll give a solution using only that.

Note: we can't use negative numbers as exponents in Muirhead, so let us multiply by a b c abc . Thus, a b c x = a 2 b c + b 2 a c + c 2 a b abcx=a^2bc+b^2ac+c^2ab , a b c y = a 4 + b 4 + c 4 abcy=a^4+b^4+c^4 We have to multiply both sides by 2 for the Muirhead to be complete (see the AM-GM part in Wiki, where it explains that for example M(2,1,1) means there will be a a 2 b c a^2bc and a a 2 c b = a 2 b c a^2cb=a^2bc expression too)

2 a b c x = a 2 b c + a 2 c b + b 2 a c + b 2 c a + c 2 a b + c 2 b a = M ( 2 , 1 , 1 ) 2abcx=a^2bc+a^2cb+b^2ac+b^2ca+c^2ab+c^2ba=M(2,1,1) 2 a b c y = a 4 + a 4 + b 4 + b 4 + c 4 + c 4 = a 4 b 0 c 0 + a 4 c 0 b 0 + b 4 a 0 c 0 + b 4 c 0 a 0 + c 4 a 0 b 0 + c 4 b 0 a 0 = M ( 4 , 0 , 0 ) 2abcy=a^4+a^4+b^4+b^4+c^4+c^4=a^4b^0c^0+a^4c^0b^0+b^4a^0c^0+b^4c^0a^0+c^4a^0b^0+c^4b^0a^0=M(4,0,0) . Since M ( 4 , 0 , 0 ) M ( 2 , 1 , 1 ) M(4,0,0) \ge M(2,1,1) , y x y \ge x , and the exercise is done.

( 3 , 1 , 1 ) ( 1 , 0 , 0 ) s y m a 3 b c s y m a 2 c y c a 3 b c 2 ( a + b + c ) y x \because (3,-1,-1) \succ (1,0,0) \\\therefore\sum_{sym}\frac{a^3}{bc}\ge\sum_{sym}a\\\Leftrightarrow 2\sum_{cyc}\dfrac{a^3}{bc}\ge2(a+b+c)\\\Leftrightarrow y\ge x

Krish Shah
Apr 15, 2020

Given y = a 3 b c + b 3 c a + c 3 a b , y=\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}, if we give all of the fractions the same denominator, namely a b c abc , we get = a 4 a b c + b 4 a b c + c 4 a b c = a 4 + b 4 + c 4 a b c . =\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc} = \frac{a^4+b^4+c^4}{abc}. Using the inequality a 2 + b 2 + c 2 a b + b c + c a a^2+b^2+c^2≥ab+bc+ca , we have y = a 4 + b 4 + c 4 a b c a 2 b 2 + b 2 c 2 + c 2 a 2 a b c a b 2 c + a b c 2 + a 2 b c a b c = a b c ( a + b + c ) a b c = a + b + c = x . y=\frac{a^4+b^4+c^4}{abc}≥\frac{a^2b^2+b^2c^2+c^2a^2}{abc}≥\frac{ab^2c+abc^2+a^2bc}{abc}=\frac{abc(a+b+c)}{abc}=a+b+c=x. Thus, y x . y≥x.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...