Which is Bigger?

Algebra Level 1

Which is bigger, 1 1 33 11^{33} or 200 1 10 2001^{10} ?

200 1 10 2001^{10} 1 1 33 11^{33}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ashraful Mahin
Jun 12, 2016

Relevant wiki: Exponential Inequalities - Different Base

Let 1 1 33 ? 200 1 10 11^{33} \ ? \ 2001^{10}

or, ( 1 1 3 ) 11 ? 200 1 10 (11^3)^{11} \ ? \ 2001^{10}

or, 133 1 11 ? 200 1 10 1331^{11}\ ? \ 2001^{10}

Now dividing both sides with 133 1 10 1331^{10} we find,

1331 ? ( 2001 / 1331 ) 10 1331 \ ? \ (2001/1331)^{10}

Notice ( 2001 / 1331 ) < 2 (2001/1331) < 2 so, ( 2001 / 1331 ) 10 < 2 10 = 1024 (2001/1331)^{10} < 2^{10}=1024 .

So, 1331 > 1024 > ( 2001 / 1331 ) 10 1331 > 1024 > (2001/1331)^{10} /

or 1331 > ( 2001 / 1331 ) 10 1331 > (2001/1331)^{10} , so now can do backward substitution & reach the following result:

1 1 33 > 200 1 10 11^{33} > 2001^{10}

Chew-Seong Cheong
Jun 26, 2016

1 1 33 200 1 10 = ( 10 + 1 ) 33 ( 2 1 0 3 + 1 ) 10 By binomial expansion = 1 0 33 + 33 1 0 32 + 528 1 0 31 + . . . 2 10 1 0 30 + 10 2 9 1 0 27 + 45 1 0 24 + . . . = 1 0 3 1 0 30 + 3300 1 0 30 + 5280 1 0 30 + . . . 1024 1 0 30 + 5.120 1 0 30 + 45 1 0 24 + . . . = 9580 1 0 30 + . . . 1029.12 1 0 30 + . . . > 1 1 1 33 > 200 1 10 \begin{aligned} \frac {11^{33}}{2001^{10}} & = \frac {(10+1)^{33}}{(2\cdot 10^3+1)^{10}} \quad \quad \small \color{#3D99F6}{\text{By binomial expansion}} \\ & = \frac{10^{33}+33\cdot 10^{32}+528\cdot 10^{31}+...}{2^{10}10^{30}+10\cdot 2^9 10^{27}+45\cdot 10^{24}+...} \\ & = \frac{10^3 10^{30}+3300 \cdot 10^{30}+5280 \cdot 10^{30}+...}{1024 \cdot 10^{30}+5.120 \cdot 10^{30}+45\cdot 10^{24}+...} \\ & = \frac {9580\cdot 10^{30}+...}{1029.12\cdot 10^{30} +...} \\ & > 1 \\ \implies 11^{33} & \boxed{>} 2001^{10} \end{aligned}

J Chaturvedi
Jul 1, 2016

11^3 = 1331,
2001^10 < {(2)(11^3)}^10
= (2^10)(11^30) = (1024)(11^30).
< (1331)(11^30) = (11^3)(11^30)=11^33
So, (2001)^10 < (11)^33.



0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...