Which is greater?

Let x x and y y be distinct positive integers.

Which is greater?

A . x 2 y 2 x y B . x 2 + y 2 x + y \LARGE {A.\frac{x^2-y^2}{x-y}\\ B.\frac{x^2+y^2}{x+y}}

Two are equal B A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Md Mehedi Hasan
Nov 5, 2017

x 2 y 2 x y = ( x y ) ( x + y ) x y = x + y \frac{x^2-y^2}{x-y}=\frac{(x-y)(x+y)}{x-y}=x+y

Again, x 2 + y 2 x + y = ( x + y ) 2 2 x y x + y = ( x + y ) 2 x y x + y \frac{x^2+y^2}{x+y}=\frac{(x+y)^2-2xy}{x+y}=(x+y)-\frac{2xy}{x+y}

Here, 2 x y x + y > 0 x , y ϵ N \frac{2xy}{x+y}>0\quad \boxed{x,y\epsilon N}

Then, x + y > ( x + y ) 2 x y x + y x+y>(x+y)-\frac{2xy}{x+y}

So, the right ans is A \boxed{A}

Saksham Jain
Nov 10, 2017

Simplify A A is x+y Add and subtract 2xy in numerator then simplify B is x+y-2xy/(x+y) Therefore A>B

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...