Which is greater?

Algebra Level 3

Find the greatest expression of 7 \sqrt{7} + 10 \sqrt{10} , 3 \sqrt{3} + 19 \sqrt{19} and 8 \sqrt{8} + 9 \sqrt{9}

Challenge:Try with out the calculator.

For more problems ,click here .
8 \sqrt{8} + 9 \sqrt{9} All are equal 3 \sqrt{3} + 19 \sqrt{19} 7 \sqrt{7} + 10 \sqrt{10}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anik Mandal
May 13, 2014

Squaring the three equations we get,

( 7 + 10 ) 2 = 17 + 2 70 ({\sqrt{7}+\sqrt{10})}^2=17+2\sqrt{70} .........................(1)

( 3 + 19 ) 2 = 22 + 2 57 ({\sqrt{3}+\sqrt{19})}^2=22+2\sqrt{57} .........................(2)

( 8 + 9 ) 2 = 17 + 2 72 ({\sqrt{8}+\sqrt{9})}^2=17+2\sqrt{72} ............................(3)

Reduce the expressions (1) ,(2) and (3) by 17 and we have,

2 70 \sqrt{70} , 5+ 2 57 \sqrt{57} and 2 72 \sqrt{72} respectively .

Square these expressions.This yields

( 2 70 ) 2 = 280 {(2\sqrt{70})}^2 =280

( 5 + 2 57 ) 2 = 253 + 20 57 {(5+2\sqrt{57})}^2 =253+20\sqrt{57}

( 2 72 ) 2 = 288 {(2\sqrt{72})}^2 =288

Subtract 253 from each and we get,

27 , 20 57 20\sqrt{57} and 35 respectively

Since 57 \sqrt{57} is greater than 2 , it follows that 20 57 20\sqrt{57} > 35 > 27

Hence ( 3 + 19 ) (\sqrt{3}+\sqrt{19}) is the greatest expression.

Ah...nice way of solving it...I approximated the values, and since it said without the calf...my approx values came out to be nearly equal....sad

Tanya Gupta - 7 years ago

better solution

Heder Oliveira Dias - 7 years ago

use the calculator!!!!!!!

manas vema - 7 years ago

{ ( 7 + 10 ) 2 = 17 + 2 70 ( 3 + 19 ) 2 = 22 + 2 57 ( 8 + 9 ) 2 = 17 + 2 72 8 + 9 > 7 + 10 \begin{cases} (\sqrt{7}+\sqrt{10})^2 & = 17+2\sqrt{70} \\ (\sqrt{3}+\sqrt{19})^2 & = 22+2\sqrt{57} \\ (\sqrt{8}+\sqrt{9})^2 & = 17+2\sqrt{72} \end{cases} \quad \Rightarrow \sqrt{8}+\sqrt{9} > \sqrt{7}+\sqrt{10}

We note that:

( 8 + 9 ) 2 = 17 + 2 72 = 17 + 12 2 < 17 + 12 ( 1.5 ) = 35 (\sqrt{8}+\sqrt{9})^2 = 17+2\sqrt{72} = 17+12\sqrt{2} < 17+12(1.5) = 35

( 3 + 19 ) 2 = 22 + 2 57 > 22 + 2 49 = 36 (\sqrt{3}+\sqrt{19})^2 = 22+2\sqrt{57} > 22+2\sqrt{49} = 36

Therefore, 3 + 19 > 8 + 9 > 7 + 10 \boxed{\sqrt{3}+\sqrt{19}} > \sqrt{8}+\sqrt{9} > \sqrt{7}+\sqrt{10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...