Which Is Larger?

Let

  • ρ \rho = number of ways you can arrange the 6 letters of R R , 5 letters of G G , 4 letters of J J , 3 letters of M M and 2 letters of K K to create a single word.

  • μ \mu = number of ways you can arrange the 4 letters of R R , 3 letters of G G , 4 letters of J J , 3 letters of M M , 2 letters of K K , 1 letter of A A and 1 letter of B B to create a single word.

Relate ρ \rho and μ \mu .


For more problems like this, try answering this set .

μ < ρ \mu < \rho ρ < μ \rho < \mu μ = ρ \mu = \rho

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Apr 3, 2017

ρ = ( 6 + 5 + 4 + 3 + 2 ) ! 6 ! 5 ! 4 ! 3 ! 2 ! = 20 ! 6 ! 5 ! 4 ! 3 ! 2 ! \rho = \cfrac{(6 + 5 + 4 + 3 + 2)!}{6! \cdot 5! \cdot 4! \cdot 3! \cdot 2!} = \cfrac{20!}{6! \cdot 5! \cdot 4! \cdot 3! \cdot 2!}

while

μ = ( 4 + 3 + 4 + 3 + 2 + 1 + 1 ) ! 4 ! 3 ! 4 ! 3 ! 2 ! 1 ! 1 ! = 18 ! 4 ! 3 ! 4 ! 3 ! 2 ! 1 ! 1 ! \mu = \cfrac{(4 + 3 + 4 + 3 + 2 + 1 + 1)!}{4! \cdot 3! \cdot 4! \cdot 3! \cdot 2! \cdot 1! \cdot 1! } = \cfrac{18!}{4! \cdot 3! \cdot 4! \cdot 3! \cdot 2! \cdot 1! \cdot 1! }

Now,

20 ! 6 ! 5 ! 4 ! 3 ! 2 ! _?_ 18 ! 4 ! 3 ! 4 ! 3 ! 2 ! 1 ! 1 ! ( 20 19 ) _?_ ( 6 ! 5 ! 4 ! 3 ! 2 ! ) ( 4 ! 3 ! 4 ! 3 ! 2 ! 1 ! 1 ! ) 380 < 5 6 5 4 = 600 ρ < μ \begin{aligned} \cfrac{20!}{6! \cdot 5! \cdot 4! \cdot 3! \cdot 2!} \ & \text{\_?\_} \ \cfrac{18!}{4! \cdot 3! \cdot 4! \cdot 3! \cdot 2! \cdot 1! \cdot 1! } \\ (20 \cdot 19) \ & \text{\_?\_} \ \cfrac{(6! \cdot 5! \cancel{\cdot 4! \cdot 3! \cdot 2!} )}{(4! \cdot 3! \cdot \cancel{4! \cdot 3! \cdot 2!} \cdot 1! \cdot 1!)} \\ 380 \ & \text{<} \ 5 \cdot 6 \cdot 5 \cdot 4 = 600 \\ \therefore & \boxed{\rho < \mu} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...