Which is larger?

Algebra Level 4

Which is larger

100 9 2017 or 101 0 1009 × 100 8 1008 ? 1009 ^ { 2017} \quad \text{ or } \quad 1010 ^ { 1009 } \times 1008 ^ {1008} ?

Hint: a n = ( 1 + 1 n ) n a_n = \left( 1 + \dfrac{1}{n} \right)^n for n = 1 , 2 , 3 , n = 1, 2, 3, \ldots is an increasing sequence.

100 9 2017 1009 ^ { 2017 } 101 0 1009 × 100 8 1008 1010 ^ { 1009 } \times 1008 ^ {1008}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
Apr 30, 2018

Let A = 100 9 2017 = 100 9 1009 × 100 9 1008 A=1009^{2017}=1009^{1009}\times 1009^{1008} and B = 101 0 1009 × 100 8 1008 B=1010 ^ { 1009 } \times 1008 ^ {1008} .

Then A B = ( 1009 1010 ) 1009 × ( 1009 1008 ) 1008 = ( 1 + 1 1008 ) 1008 ( 1 + 1 1009 ) 1009 < 1 \dfrac{A}{B}=\left(\dfrac{1009}{1010}\right)^{1009} \times \left(\dfrac{1009}{1008}\right)^{1008} = \dfrac{\left(1+\dfrac{1}{1008}\right)^{1008}}{\left(1+\dfrac{1}{1009}\right)^{1009}}<1 as ( 1 + 1 n ) n \left( 1 + \dfrac{1}{n} \right)^n is increasing. This means that A < B A<B and hence the result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...