Which is the Supreme Prime?

Level pending

Find the largest prime factor of : 3 12 + 12 12 2 6 { 3 }^{ 12 }+{ 12 }^{ 12 }-{ 2 }\cdot { 6 }


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Abhigyan Ninama
Oct 10, 2015

3 12 + 2 12 2 6 6 = ( 3 6 ) 2 + ( 2 6 ) 2 2 ( 3 × 2 ) 6 = ( 3 6 ) 2 + ( 2 6 ) 2 2 ( 3 6 ) × ( 2 6 ) u s i n g t h e i d e n t i t y : a 2 + b 2 2 a × b = ( a b ) 2 = ( 3 6 2 6 ) 2 = [ ( 3 3 ) 2 ( 2 3 ) 2 ] 2 u s i n g t h e i d e n t i t y : ( a 2 b 2 ) = ( a + b ) ( a b ) = [ ( 3 3 + 2 3 ) ( 3 3 2 3 ) ] 2 u s i n g t h e i d e n t i t y : ( a 3 + b 3 ) ( a 3 b 3 ) = ( a + b ) ( a 2 a b + b 2 ) ( a b ) ( a 2 + a b + b 2 ) = [ ( 3 + 2 ) ( 3 2 3 × 2 + 2 2 ) ( 3 2 ) ( 3 2 + 3 × 2 + 2 2 ) ] 2 = [ ( 5 ) × ( 9 6 + 4 ) ( 1 ) × ( 9 + 6 + 4 ) ] 2 = [ ( 5 ) × ( 7 ) × ( 19 ) ] 2 = 5 2 × 7 2 × 1 9 2 { 3 }^{ 12 }+{ 2 }^{ 12 }-2\cdot 6^{ 6 }\\ =(3^{ 6 })^{ 2 }+(2^{ 6 })^{ 2 }-2\cdot (3\times 2)^ 6\\ =(3^{ 6 })^{ 2 }+(2^{ 6 })^{ 2 }-2\cdot (3^{ 6 })\times (2^{ 6 })\\ using\quad the\quad identity:\quad a^{ 2 }+b^{ 2 }-2\cdot a\times b\quad =\quad (a-b)^{ 2 }\\ =(3^{ 6 }-2^{ 6 })^{ 2 }\\ =[(3^{ 3 })^{ 2 }-(2^{ 3 })^{ 2 }]^{ 2 }\\ using\quad the\quad identity:\quad (a^{ 2 }-b^{ 2 })\quad =\quad (a+b)(a-b)\\ =[(3^{ 3 }+2^{ 3 })(3^{ 3 }-2^{ 3 })]^{ 2 }\\ using\quad the\quad identity:\quad (a^{ 3 }+b^{ 3 })(a^{ 3 }-b^{ 3 })\quad =\quad (a+b)(a^{ 2 }-ab+b^{ 2 })(a-b)(a^{ 2 }+ab+b^{ 2 })\\ =[(3+2)(3^{ 2 }-3\times 2+2^{ 2 })(3-2)(3^{ 2 }+3\times 2+2^{ 2 })]^{ 2 }\\ =[(5)\times (9-6+4)(1)\times (9+6+4)]^{ 2 }\\ =[(5)\times (7)\times (19)]^{ 2 }\\ =\quad 5^{ 2 }\times 7^{ 2 }\times 19^{ 2 } N o w , a s 5 , 7 a n d 19 a r e a l l p r i m e n u m b e r s T h e r e f o r e , t h e y a r e t h e p r i m e f a c t o r s o f 3 12 + 2 12 2 6 6 T h e r e f o r e , 19 i s t h e b i g g e s t p r i m e f a c t o r o f t h e e q u a t i o n Now,\quad as\quad 5,\quad 7\quad and\quad 19\quad are\quad all\quad prime\quad numbers\quad \\ Therefore,\quad they\quad are\quad the\quad prime\quad factors\quad of\quad { 3 }^{ 12 }+{ 2 }^{ 12 }-2\cdot 6^{ 6 } \\ Therefore,\quad 19\quad is\quad the\quad biggest\quad prime\quad factor\quad of\quad the\quad equation

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...