Which of These Gargantuan Numbers Is Bigger?

Algebra Level 2

Consider the following two values:

A = 4 5000 4 5000 B = 2 19999 + 2 19999 \begin{aligned} A &= 4^{5000} \cdot 4^{5000} \\ B &= 2^{19999} + 2^{19999} \end{aligned}

Which is bigger?

There is no way to tell They are equal B is bigger A is bigger

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

45 solutions

Joshua Ong
Feb 7, 2014

Well, 4 5000 × 4 5000 4^{5000} \times 4^{5000} is equal to 4 10000 , 4^{10000}, which is equal to 2 20000 . 2^{20000}.

On the other hand, 2 19999 + 2 19999 2^{19999}+2^{19999} can be expressed as 2 19999 2 2^{19999}*2 or 2 20000 2^{20000} , thus the answer is They are equal.

Brilliant

Callum Farnden - 7 years, 4 months ago

Log in to reply

Joshua Ong you have my vote.

King Zhang Zizhong - 7 years, 2 months ago

dam easy

arunima mor - 7 years, 3 months ago

Perfect!

Ícaro Magalhães - 7 years, 4 months ago

the most overrated answer I've seen in my life (113 upvotes :/)

mathh mathh - 6 years, 10 months ago

Log in to reply

It's a shame that all the easy problems get so much activity, when some of the really really good problems get like 7 solvers... Ahhw well.

Nicolas Bryenton - 6 years, 10 months ago

Dang, thought the dot was a point... No wonder i got it wrong

Leckon Erinal - 5 years, 9 months ago

Thanks a lot.

Mayank Devnani - 7 years, 3 months ago

yes i like it

Yaman Rajab - 7 years, 3 months ago

i did not saw the sign darn :/

Andrew Banagan - 7 years, 3 months ago

i solved the same way ..

Shriram Lokhande - 7 years, 3 months ago

Perfectly right!

Jagan mohan rao - 7 years, 3 months ago

hmmm genious

Ahmed-raza Qadri - 7 years, 3 months ago

i knew the answer

Aditya Ranjan - 7 years, 3 months ago

nice friend

waqas khan - 7 years, 2 months ago

Tricky

Omkar Vedak - 7 years, 1 month ago

okay, i see.

noel hermano - 7 years ago

I just didn't knew the 2nd law !

Adeel Shams - 6 years, 11 months ago

they r equal

Amit Yadav - 6 years, 10 months ago

2v3v2/2v2v3=?????????????

Naveel Khan - 6 years, 10 months ago

ahh, now I understand it :)

Arjay Allanigui - 6 years, 10 months ago

Thanks!

Anne Gross - 7 years, 4 months ago

I could not tell that dot Meant multiply.

Shamari Robinson - 6 years, 10 months ago
Gabriel Merces
Feb 8, 2014
  • Just Use the Product Rule and place the result in the Base 2 2

A = 4 5000 × 4 5000 A = 4^{5000} \times 4^{5000} = 4 10000 4^{10000} = 2 2 10000 2^{2 \cdot 10000} = 2 20000 2^{20000}

  • Just put 2 19999 2^{19999} on Evidence

B = 2 19999 + 2 19999 B = 2^{19999} + 2^{19999}

B = ( 2 19999 ) ( 2 ) B = (2^{19999})(2) \Rightarrow 2 19999 + 1 = 2 20000 2^{19999 + 1} = 2^{20000}

So A A and B B Are Equal

thanks

riitu kuumar - 7 years, 4 months ago

thank you

Shanmuga Vasan - 7 years, 4 months ago

dude ......... plx explain me ........... how 2^19999+2^19999=2*2^19999

Abdul Samad - 7 years, 2 months ago

Log in to reply

If 3 + 3 = 2 × 3 3+3 = 2 \times 3 , then 2 1999 + 2 1999 = 2 × 2 1999 = 2 2000 2^{1999}+2^{1999} = 2 \times 2^{1999} = 2^{2000} .

Raj Magesh - 7 years, 2 months ago

Extract the common factor: 2^19999+2^19999 = 2^19999 (1+1) = 2 2^19999 = 2^20000

Therverson Kanavathy - 6 years, 10 months ago

You took 2^ then how come 2 is left

mayank singh - 7 years, 4 months ago

Log in to reply

2^19999+2^19999 =2^19999*(1+1)=2^20000

sunitha p - 7 years, 2 months ago

good one

Sai Subbu - 7 years, 3 months ago
Prasun Biswas
Feb 9, 2014

Given that, A = 4 5000 . 4 5000 A=4^{5000} . 4^{5000} and B = 2 19999 + 2 19999 B=2^{19999}+2^{19999}

Now, A = 4 5000 . 4 5000 = ( 4 × 4 ) 5000 = ( 16 ) 5000 = ( 2 4 ) 5000 = ( 2 ) 4 × 5000 = 2 20000 A=4^{5000} . 4^{5000} = (4\times 4)^{5000}=(16)^{5000} = (2^4)^{5000} = (2)^{4\times 5000}=\boxed{2^{20000}} ....(i)

Also, B = 2 19999 + 2 19999 = 2 × 2 19999 = 2 1 + 19999 = 2 20000 B=2^{19999}+2^{19999}=2\times 2^{19999} = 2^{1+19999} = \boxed{2^{20000}} ....(ii)

From (i) and (ii), we see that A=B

So, the answer is Both the values are equal.

great

fatima adam - 7 years, 3 months ago

dude ......... plx explain me ........... how 2^19999+2^19999=2*2^19999

Abdul Samad - 7 years, 2 months ago

Log in to reply

Take a variable x x . What would be the value of x + x x+x ?? Wouldn't it be 2 x 2x !! So, here if you take 2 19999 2^{19999} as x x , then the value of 2 19999 + 2 19999 2^{19999}+2^{19999} would obviously be 2 × 2 19999 2\times 2^{19999} .

Prasun Biswas - 7 years, 2 months ago
Everson Dantas
Feb 18, 2014

Solving A: we know that 4 = 2 2 4 = 2^2 , so we have this value to A: ( 2 2 ) 5000 ( 2 2 ) 5000 (2^2)^{5000} * (2^2)^{5000} . Using this rule: ( x m ) n = x m n (x^m)^n = x^{m*n} in each terms and then this one: x m x n = x m + n x^m*x^n = x^{m+n} , we get this value to A: A = 2 20000 A = 2^{20000} .

Solving B: when we have 3 + 3 3 + 3 , we can express this value as 3 ( 1 + 1 ) 3*(1 + 1) . We just need to do exactly the same here: B = 2 19999 + 2 19999 B = 2 19999 ( 1 + 1 ) B = 2 19999 2 B = 2^{19999} + 2^{19999} \Rightarrow B = 2^{19999}*(1 + 1) \Rightarrow B = 2^{19999}*2 and then we make as above and we have B = 2 20000 B = 2^{20000} .

Finally, A = B A = B

Daniel Lim
Mar 9, 2014

First we simplify these two terms first

A = 4 5000 4 5000 A = 4^{5000}\cdot4^{5000}

= 4 10000 =4^{10000}

= ( 2 2 ) 10000 =(2^2)^{10000}

= 2 20000 =2^{20000}

While B = 2 19999 + 2 19999 B = 2^{19999}+2^{19999} is similar to 2 19999 2 2^{19999}\cdot2

2 19999 2 = 2 20000 2^{19999}\cdot2 = 2^{20000}

Therefore, A A is equal to B B

Benjamin Wong
Feb 12, 2014

A=4^10000 B=2(2^19999)=2^20000 They are equal

Nada ALnounou
Aug 16, 2014

A = 4 5000 4^{5000} * 4 5000 4^{5000} = 4 5000 + 5000 4^{5000+5000} = 4 10000 4^{10000} = ( 2 2 ) 10000 (2^{2})^{10000} = 2 20000 2^{20000}

B = 2 19999 2^{19999} + 2 19999 2^{19999} = 2 2 * 2 19999 2^{19999} = 2 19999 + 1 2^{19999+1} = 2 20000 2^{20000}

A=B

Brijbihari Shukla
Mar 11, 2014

2^19999 + 2^19999 = 2X2^19999 = 2^20000 4^5000 X 4^5000 = 4^5000+5000 = 4^10000 = (2^2)^10000 = 2^20000 Hence both the values are equal

Sriram Chandra
Feb 27, 2014

with 2 as base;exponents are equal..so A=B

Shahriar Ahmed
Feb 18, 2014

2^19999+2^19999=2^20000 4^5000+4^5000=4^10000=2^20000

William Waller
Feb 16, 2014

4 5000 = ( 2 2 ) 5000 = 2 10000 4^{5000} = (2^{2})^{5000} = 2^{10000}

4 5000 × 4 5000 = 2 10000 × 2 10000 = 2 10000 + 10000 = 2 20000 4^{5000} \times 4^{5000} = 2^{10000} \times 2^{10000} = 2^{10000+10000} = 2^{20000}


2 19999 + 2 19999 = 2 × ( 2 19999 ) = 2 20000 2^{19999} + 2^{19999} = 2 \times (2^{19999}) = 2^{20000}

Mahiuddin Rasel
Feb 13, 2014

It's a Nice tricky Problem :) Find A = 4^5000+5000 that means 4^10000 = 40000

Find B = 2^19999+1 = 2^20000 = 40000

so they are equal

Mani Kant
Feb 11, 2014

A = 4 5000 . 4 5000 = 4 10000 A= 4^{5000}.4^{5000}= 4^{10000} and B = 2 19999 + 2 19999 = 2. 2 19999 = 2 20000 = ( 2 2 ) 10000 = 4 10000 B= 2^{19999}+2^{19999}= 2.2^{19999}= 2^{20000}= {(2^2)}^{10000}= 4^{10000}

Aditya Joshi
Feb 10, 2014

A = 4 5000 . 4 5000 = 2 10000 . 2 10000 = 2 10000 + 10000 = 2 20000 A = 4^{5000}.4^{5000} = 2^{10000}.2^{10000} = 2^{10000 + 10000} = 2^{20000}

B = 2 19999 + 2 19999 = 2 19999 ( 1 + 1 ) = 2 19999 . ( 2 ) = 2 19999 . 2 1 = 2 19999 + 1 = 2 20000 B = 2^{19999} + 2^{19999} = 2^{19999}(1 + 1) = 2^{19999}.(2) = 2^{19999}.2^{1} = 2^{19999+1} = 2^{20000}

Thus, A = B \boxed{A = B}

A=2^2^5000 X 2^2^5000 =2^20000

B=2X2^19999 =2^20000

hence A=B

Agita Phasa
Feb 9, 2014

A = 4^5000 . 4^5000 = 2^10000 . 2^10000 = 2^20000

B = 2^19999 + 2^19999 = 2^19999 (1+1) = 2^19999 . 2 = 2^20000

:. A = B

Julio Reyes
Feb 9, 2014

They are they same.

A = 4 5000 4 5000 = 4 10000 = ( 2 2 ) 10000 = 2 20000 A = 4^{5000} \cdot 4^{5000} = 4^{10000} = (2^{2})^{10000} = 2^{20000}

B = 2 19999 + 2 19999 = 2 2 19999 = 2 20000 B = 2 ^{19999} + 2^{19999} = 2 \cdot 2^{19999} = 2^{20000}

SIMPLE again : follow that laws of indices apply only to products , for summation , take 2 e19,999 common and proceed., so both are equal.

A = 4 5000 4 5000 = ( 2 2 ) 5000 ( 2 2 ) 5000 = 2 10000 2 10000 = 2 20000 A=4^{5000}\cdot4^{5000}=(2^2)^{5000}\cdot(2^2)^{5000}=2^{10000}\cdot2^{10000}=2^{20000}

and

B = 2 19999 + 2 19999 = 2 2 19999 = 2 20000 B=2^{19999}+2^{19999}=2\cdot2^{19999}=2^{20000}

Therefore, they are equal.

Isabella Martin
Aug 21, 2015

I liked this question

Michael Velli
May 13, 2015

2^20,000=x. 2^19,9999=x/2. x/2+x/2= x. Thus they are equal.

Zark Dogar
Dec 6, 2014

4^5000.4^5000=2^10000*2=2^20000 and 2^19999+2^19999 is also equals to 2^20000becouse we take 2^19999 common fro, both the terms and which becomes 2^19999(1+1)=2^19999(2)=2^19999+1=2^20000.

A=4^5000 X 4^5000= 4^10000,

B=2^19999 + 2^19999 multiply and divide by 2 we get B=2((2^19999)+(2^19999))/2, B=(2^20000 + 2^20000)/2, B=(4^10000 + 4^10000)/2, B=4^10000(1+1)/2, B=4^10000 (2)/2=4^10000,

A=B.

Mahmoud Gabriel
Aug 17, 2014

I think you need no law, states that 5000=5 and 19999 approx = 19 try to solve it that way 4^5.4^5 and 2^19+2^19 you will get the same answer. Note : not sure if this answer could be wrong in some cases but it worked for that problem :)

Uahbid Dey
Apr 6, 2014

A = ( 2 2 ) 5000 × ( 2 2 ) 5000 = 2 20000 A=\left ( 2^{2} \right )^{5000}\times \left ( 2^{2} \right )^{5000}=2^{20000} B = 2 19999 × ( 1 + 1 ) = 2 20000 B=2^{19999}\times \left ( 1+1 \right )=2^{20000} = > A = B =>A=B

Yumi Kim
Mar 17, 2014

4^5000 * 4^5000 = (4^5000)^2= 4^10000= FINAL: 2^20000. 2^19999+2^19999= 2(2^19999)= (2^1)*(2^19999)= FINAL: 2^20000 So there are equal

Dharambir Kaushik
Mar 13, 2014

let start with a simple solution 2^2+2^2=4+4=8, means 2^3 so 2^19999+2^19999=2^19999+1=2^20000 and 4^500 4 500=2^20000 (:-4^500=2^500.2^500 = 2^10000)

Rusli Azis
Mar 4, 2014

Let's see A = 4^5000 * 4^5000 = 4^(5000+5000) = 4^10000 = (2^2)^10000 = 2^20000. On the other hand, B = 2^19999 + 2^19999 = 2* 2^19999 = 2^20000. So that, A=B

Nikky Fauzdar
Mar 2, 2014

4^5000*4^5000=4^10000=2^20000 and also 2^19999+2^19999=2^20000

4^{5000} * 4^{5000} = 2^{10000} * 2^{10000} = 2^{20000} = 2^{19999} * 2 = 2^{19999} + 2^{19999}

Govind Jha
Feb 18, 2014

A= 4^(5000+5000)= 4^10000 =2^20000 B= 2^19999 * 2 = 2^20000 Hence,they are equal.

Saurabh Singh
Feb 17, 2014

A=4^{5000}.4^{5000} =2^{10000}.2^{10000} =2^{20000}

B=2.2^{19999} =2^{20000} Hence, A=B.

Suhail Khan
Feb 16, 2014

4^5000 . 4^5000 = 4^10000 = 2^20000 2^19999+2^19999= 2*2^19999=2^20000

A=(4^5000).(4^5000)=(4^10000)=(2^20000). Again, B=(2^19999)+(2^19999)=2.2^19999=2^200000 So, A=B

Harsh Deswal
Feb 11, 2014

4^{5000} . 4^{5000} = 4^{10000} = 2^{20000} = 2^{19999} + 2^{19999}

Hùng Minh
Feb 10, 2014

A = 4^10.000; B = 2^20.000 = (2^2)^10.000 = 4^10.000 =A

Budi Utomo
Feb 10, 2014

A = (2^2)^(5000X2) = 2^(2x10000) = 2^20000. And B = 2 x 2^19999 = 2^(19999+1) = 2^20000. So A and B are equals.

Nikhil Khanna
Feb 10, 2014

4^5000 =2^2(5000)=2^10000 =>2^10000 X 2^10000= 2^20000

2^19999 +2^19999 = 2^19999(1 +1) = 2^19999 . 2 = 2^20000

Tappu Biswas
Feb 10, 2014

a=2^20'000 b=2^19999(1+1)=> 2^20000 so a=b

Ashish Keshkamat
Feb 10, 2014

A = 2^{10000} . 2^{10000} = 2^{20000} and B = 2^{19999} . (1+1) = 2^{19999}.2 = 2^{20000} Therefore, A=B

Gagandeep Singh
Feb 10, 2014

A=4^5000 4^5000=2^10000 2^10000=2^20000

B=2^19999+2^19999=2^(19999+19999)=2^20000

Agnes Fung
Feb 10, 2014

A can be written as follows:

2 10000 × 2 10000 = 2 20000 2^{10000} \times 2^{10000} = 2^{20000}

B can be written as follows:

2 19999 + 2 19999 = 2 × 2 19999 2^{19999} + 2^{19999} = 2 \times 2^{19999}

2 19999 = 2 20000 2 2^{19999} = \frac {2^{20000}}{2}

Therefore A and B are equal.

Srivedant Kar
Feb 10, 2014

here A=4^5000.4^5000 =A=2^2^5000 2^2^5000 =A=2^10000 2^10000 A=2^20000

WHEREAS B=2^19999+2^19999 B=2*2^19999 B=2^(19999+1) B=2^20000 SO A=B

*HERE ^=TO THE POWER *=X(MULTIPLIED)

Subhankar Sett
Feb 9, 2014

You can verify that a b a^{b} × \times a c a^{c} = a ( b + c ) a^{(b+c)} For example, 3 2 3^{2} × \times 3 3 3^{3} = 9 × \times 27 = 243 This can also be computed as, 3 2 3^{2} × \times 3 3 3^{3} = 3 ( 2 + 3 ) 3^{(2+3)} = 3 5 3^{5} = 243 Using this principle, 4 5000 4^{5000} × \times 4 5000 4^{5000} = 4 ( 5000 + 5000 ) 4^{(5000+5000)} = 4 10000 4^{10000}

Also, a b c a^{b^{c}} = a b × c a^{b \times c} . Since, 4 = 2 2 2^{2} , we can write 4 10000 4^{10000} as 2 2 10000 2^{2^{10000}} = 2 ( 2 × 10000 ) 2^{(2 \times 10000)} = 2 20000 2^{20000}

You can verify that a × a n a \times a^{n} = a ( n + 1 ) a^{(n+1)} . For example, 2 × 2 3 2 \times 2^{3} = 2 × 8 2 \times 8 = 16. This can also be computed as, 2 × 2 3 2 \times 2^{3} = 2 1 × 2 3 2^{1} \times 2^{3} = 2 ( 1 + 3 ) 2^{(1+3)} = 2 4 2^{4} = 16. Using this principle, 2 19999 2^{19999} + 2 19999 2^{19999} = 2 × 2 19999 2 \times 2^{19999} = 2 ( 1 + 19999 ) 2^{(1+19999)} = 2 20000 2^{20000}

( a b ) c = a b × c (a^b)^c=a^{b \times c}

a b c a b × c a^{b^c} \neq a^{b\times c}

( 4 3 ) 2 = 4 3 × 2 = 4 6 = 4096 (4^3)^2=4^{3\times 2}=4^{6}=4096

4 3 2 = 4 3 × 3 = 4 9 = 262144 4^{3^2}=4^{3 \times 3}=4^{9}=262144

Aronas Nuresi - 7 years, 1 month ago
Pruthvi Sunku
Feb 9, 2014

Take common as 2^19999 from B v get 2^20000 From A, as bases are equal ,it will become 4^10000=2^20000

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...