Which rule to apply?

Calculus Level 5

Evaluate 0 e a x sin ( n x ) x d x \large \int _{ 0 }^{ \infty }{ \frac { { e }^{ -ax }\sin { (nx) } }{ x } dx }

cot 1 ( n a ) \cot ^{ -1 }{ \left( \frac { n }{ a } \right) } a tan 1 ( n a ) a\tan ^{ -1 }{ \left( \frac { n }{ a } \right) } a cot 1 ( n a ) a\cot ^{ -1 }{ \left( \frac { n }{ a } \right) } tan 1 ( n a ) \tan ^{ -1 }{ \left( \frac { n }{ a } \right) }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tanishq Varshney
Sep 20, 2015

I ( a ) = 0 e a x sin n x x d x \large{I(a)=\displaystyle \int^{\infty}_{0} \frac{e^{-ax} \sin nx}{x} dx}

Differentiating wrt a a

I ( a ) = 0 e a x sin n x d x \large{I^{\prime}(a)=\displaystyle \int^{\infty}_{0} \frac{-\not{x}e^{-ax} \sin nx}{\not{x}} dx}

I ( a ) = 1 n 2 + a 2 e a x ( a sin n x n cos n x ) 0 \large{I^{\prime}(a)=-\frac { 1 }{ \sqrt { { n }^{ 2 }+{ a }^{ 2 } } } { e }^{ -ax }\left( -a\sin { nx } -n\cos { nx } \right) \overset { \infty }{ \underset { 0 }{ | } } }

( e a x sin ( b x ) d x = 1 a 2 + b 2 ( a sin ( b x ) b cos ( b x ) ) ) \large{\left(\because \quad \int { { e }^{ ax }\sin { \left( bx \right) dx } } =\frac { 1 }{ \sqrt { { a }^{ 2 }+{ b }^{ 2 } } } \left( a\sin { \left( bx \right) -b\cos { \left( bx \right) } } \right) \right)}

I ( a ) = n n 2 + a 2 \large{I^{\prime} (a)=-\frac{n}{\sqrt{n^2+a^2}}}

I ( a ) = n n 2 + a 2 d a \large{I(a)=\int -\frac{n}{\sqrt{n^2+a^2}} da}

I ( a ) = arctan ( a n ) + c \large{I(a)=-\arctan \left (\frac{a}{n} \right)+c}

We notice that I ( ) = 0 I(\infty)=0 thus c = π 2 \large{c=\frac{\pi}{2}}

I ( a ) = π 2 arctan ( a n ) \large{I(a)=\frac{\pi}{2}-\arctan \left (\frac{a}{n} \right)}

I ( a ) = cot 1 ( a n ) \large{I(a)=\cot^{-1} { \left( \frac { a }{ n } \right) } }

I ( a ) = tan 1 ( n a ) \large{\rightarrow I(a)=\boxed{\tan^{-1} \left (\frac{n}{a} \right)}}

You can read this for more information.

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

Thanks a ton!! :)

Rohit Ner - 5 years, 8 months ago
Akhilesh Vibhute
Jan 16, 2016

Property of Laplace Transforms Differentiate it wrt a and then integrate from a to infinity

we can use laplace transformation of ((sinnx)/x) first find L[sinnx] then integrate it with limits a to infinity and we get our solution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...