Who am I?

Number Theory Level pending

I am the number that is divisible by 20 20 the original number. If I multiplied by 12 12 , the result will be divisible by 42 42 the original number. If I multiplied by 45 45 , the result will be divisible by 80 80 the original number. Suppose I was n n , specify many of the original numbers that divide 21 n 3 21n^ 3 .


The answer is 325.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

n 20 n \Rightarrow 20 Positive factors

12 n 42 12n \Rightarrow 42 Positive factors

45 n 80 45n \Rightarrow 80 Positive factors

12 n = 2 2 3 n \Rightarrow 12n = 2^2 \cdot 3 \cdot n

45 n = 3 2 5 n \Rightarrow 45n = 3^2 \cdot 5 \cdot n

Many positive factors of a 1 b 1 a 2 b 2 a 3 b 3 . . . a n b n { a }_{ 1 }^{ { b }_{ 1 } }\cdot { a }_{ 2 }^{ { b }_{ 2 } }\cdot { a }_{ 3 }^{ { b }_{ 3 } }\cdot ...\cdot { a }_{ n }^{ { b }_{ n } } with { a 1 , a 2 , a 3 , . . . . , a n } { \left\{ { a }_{ 1 },{ a }_{ 2 },{ a }_{ 3 },....,{ a }_{ n } \right\} } \in prime and { b 1 , b 2 , b 3 , . . . . , b n } { \left\{ { b }_{ 1 },{ b }_{ 2 },{ b }_{ 3 },....,{ b }_{ n } \right\} } \in Original number, can be determined with ( b 1 + 1 ) ( b 2 + 1 ) ( b 3 + 1 ) . . . ( b n + 1 ) { (b }_{ 1 }+1)({ b }_{ 2 }+1)({ b }_{ 3 }+1)...({ b }_{ n }+1) . Suppose the factorization n n = = m m = = c 1 d 1 c 2 d 2 c 3 d 3 . . . c n d n { c }_{ 1 }^{ { d }_{ 1 } }\cdot { c }_{ 2 }^{ { d }_{ 2 } }\cdot { c }_{ 3 }^{ { d }_{ 3 } }\cdot ...\cdot { c }_{ n }^{ { d }_{ n } } with { c 1 , c 2 , c 3 , . . . . , c n } { \left\{ { c }_{ 1 },{ c }_{ 2 },{ c }_{ 3 },....,{ c }_{ n } \right\} } \in prime and { d 1 , d 2 , d 3 , . . . . , d n } { \left\{ { d }_{ 1 },d_{ 2 },{ d }_{ 3 },....,{ d }_{ n } \right\} } \in original number.

12 n = 2 2 3 c 1 d 1 c 2 d 2 c 3 d 3 . . . c n d n \Rightarrow 12n = 2^2 \cdot 3 \cdot { c }_{ 1 }^{ { d }_{ 1 } }\cdot { c }_{ 2 }^{ { d }_{ 2 } }\cdot { c }_{ 3 }^{ { d }_{ 3 } }\cdot ...\cdot { c }_{ n }^{ { d }_{ n } }

42 = ( 2 + 1 ) ( 1 + 1 ) ( d 1 + 1 ) ( d 2 + 1 ) . . . ( d n + 1 ) \Rightarrow 42 = (2+1)(1 + 1)({ d }_{ 1 }+1)({ d }_{ 2 }+1)...({ d }_{ n }+1) 42 = 3 2 ( d 1 + 1 ) ( d 2 + 1 ) . . . ( d n + 1 ) \Rightarrow 42 = 3 \cdot 2 \cdot ({ d }_{ 1 }+1)({ d }_{ 2 }+1)...({ d }_{ n }+1)

7 = ( d 1 + 1 ) ( d 2 + 1 ) . . . ( d n + 1 ) \Rightarrow 7= ({ d }_{ 1 }+1)({ d }_{ 2 }+1)...({ d }_{ n }+1)

Because 7 is prime, so there is only 1. So we get 7 = d + 1 \Rightarrow 7 = d + 1 6 = d \Rightarrow 6 = d

So, for a while we get m 6 m^6 .

45 n = 3 2 5 c 1 d 1 c 2 d 2 c 3 d 3 . . . c n d n \Rightarrow 45n = 3^2 \cdot 5 \cdot { c }_{ 1 }^{ { d }_{ 1 } }\cdot { c }_{ 2 }^{ { d }_{ 2 } }\cdot { c }_{ 3 }^{ { d }_{ 3 } }\cdot ...\cdot { c }_{ n }^{ { d }_{ n } }

80 = ( 2 + 1 ) ( 1 + 1 ) ( d 1 + 1 ) ( d 2 + 1 ) . . . ( d n + 1 ) \Rightarrow 80 = (2 + 1)(1 + 1)({ d }_{ 1 }+1)({ d }_{ 2 }+1)...({ d }_{ n }+1) 80 = 3 2 ( d 1 + 1 ) ( d 2 + 1 ) . . . ( d n + 1 ) \Rightarrow 80 = 3 \cdot 2 ({ d }_{ 1 }+1)({ d }_{ 2 }+1)...({ d }_{ n }+1)

15 = ( d 1 + 1 ) ( d 2 + 1 ) . . . ( d n + 1 ) \Rightarrow 15 = ({ d }_{ 1 }+1)({ d }_{ 2 }+1)...({ d }_{ n } + 1)

So, the form we get there are two factors. 15 = ( d 1 + 1 ) ( d 2 + 1 ) \Rightarrow 15 = ({ d }_{ 1 }+1)({ d }_{ 2 }+1) .

Value n n is possible 2 x + 2 3 y + 1 5 z + 1 { 2 }^{ x+2 }\cdot { 3 }^{ y+1 }\cdot { 5 }^{ z+1 } . An example is 2 4 3 5 2^4 \cdot 3 \cdot 5 . 2 4 3 5 2^4 \cdot 3 \cdot 5 and satisfying 12 n 12n , but not satisfying 45 n 45n .

Another possible form is 2 4 3 7 2^4 \cdot 3 \cdot 7 .

2 4 3 7 2^4 \cdot 3 \cdot 7 satisfying all. So, n = 2 4 3 7 n = 2^4 \cdot 3 \cdot 7 .

21 n 3 = 21 ( 2 4 3 7 ) 3 = 3 7 2 12 3 3 7 3 = 2 12 3 4 7 4 21n^3 = 21 \cdot (2^4 \cdot 3 \cdot 7)^3 = 3 \cdot 7 \cdot 2^{12} \cdot 3^3 \cdot 7^3 = 2^{12} \cdot 3^4 \cdot 7^4 .. So, many positive factors of 21 n 3 21n^3 are ( 12 + 1 ) ( 4 + 1 ) ( 4 + 1 ) = 13 5 5 = 325 (12 + 1)(4 + 1)(4 + 1) = 13 \cdot 5 \cdot 5 = 325 . .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...