If
a
,
b
,
c
are
real numbers
such that
a
−
2
+
b
−
a
−
2
+
c
−
b
−
3
=
2
1
c
−
2
,
find
2
a
+
3
b
+
4
c
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that you made the implicit assumption that a , b , c are real numbers. I have since edited that into the question.
Did the same .nice question
I also do this
Relevant wiki: Applying the Arithmetic Mean Geometric Mean Inequality
It is clear that a − 2 , b − a − 2 and c − b − 3 are non-negative,
Then applying AM-GM on ( a − 2 ) and 1 we have 2 a − 1 ≥ a − 2
Now apply AM-GM on ( b − a − 2 ) and 1 to get 2 b − a − 1 ≥ b − a − 2
And finally AM-GM on ( c − b − 3 ) and 1 to get 2 c − b − 2 ≥ c − b − 3
Adding all three we have a − 2 + b − a − 2 + c − b − 3 ≤ 2 1 c − 2
The equation asks us for strict equality which for AM-GM only happens when all the terms are equal so,
a − 2 = 1 ⟹ a = 3
b − a − 2 = 1 ⟹ b = 6
c − b − 3 = 1 ⟹ c = 1 0
Thus 2 a + 3 b + 4 c = 8
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Radical Equations - Intermediate
a − 2 + b − a − 2 + c − b − 3 = 2 1 c − 2
Multiplying by 2 we get:
2 a − 2 + 2 b − a − 2 + 2 c − b − 3 = c − 4
c − 4 − 2 a − 2 − 2 b − a − 2 − 2 c − b − 3 = 0
( a − 2 − 2 a − 2 + 1 ) + ( b − a − 2 − 2 b − a − 2 + 1 ) + ( c − b − 3 − 2 c − b − 3 + 1 ) = 0
( a − 2 − 1 ) 2 + ( b − a − 2 − 1 ) 2 + ( c − b − 3 − 1 ) 2 = 0
a - 2 = 1 ==> a = 3
b - a - 2 = 1 ==> b = 6
c - b - 3 = 1 ==> c = 10
2 b + 3 b + 4 c = 6 + 1 8 + 4 0 = 8
Answer = 8