Who's up to the challenge? 2

Calculus Level 4

1 2 d x 5 x 2 + 2 x + 5 = 1 c d arccot ( a b c ) \int _{ 1 }^{ 2 }{ \frac { dx }{ 5{ x }^{ 2 }+2x+5 } } = \frac { 1 }{ c\sqrt { d } } \text{ arccot} \left(a\sqrt { \frac { b }{ c } } \right)

If a , b , c a,b,c and d d are positive integers that satisfy the equation above, with b , c b,c coprime, find a + b + c + d a+b+c+d .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 20, 2016

Let I I be the integral, then:

I = 1 2 d x 5 x 2 + 2 x + 5 See Note. = 1 2 d x 24 5 [ 1 + ( 5 x + 1 24 ) 2 ] Let tan θ = 5 x + 1 24 sec 2 θ d θ = 5 24 d x = 5 24 ˙ 24 5 tan 1 6 24 tan 1 11 24 sec 2 θ sec 2 θ d θ = 1 24 [ θ ] tan 1 6 24 tan 1 11 24 = 1 24 ( tan 1 11 24 tan 1 6 24 ) = 1 2 6 tan 1 ( 5 24 1 + 66 24 ) = 1 2 6 tan 1 ( 5 24 90 ) = 1 2 6 cot 1 ( 18 24 ) = 1 2 6 cot 1 ( 3 3 2 ) \begin{aligned} I & = \int_1^2 \frac{dx}{\color{#3D99F6}{5x^2+2x+5}} \quad \quad \quad \quad \small \color{#3D99F6}{\text{See Note.}} \\ & = \int_1^2 \frac{dx}{\color{#3D99F6} {\frac{24}{5} \left[1 + \left(\frac{5x+1}{\sqrt{24}} \right)^2 \right]}} \quad \quad \small \color{#3D99F6}{\text{Let } \tan \theta = \frac{5x+1}{\sqrt{24}} \Rightarrow \sec^2 \theta \space d\theta = \frac{5}{\sqrt{24}} dx} \\ & = \frac{5}{24} \dot{} \frac{\sqrt{24}}{5} \int_{\tan^{-1} \frac{6}{\sqrt{24}}} ^{\tan^{-1} \frac{11}{\sqrt{24}}} \frac{\sec^2 \theta}{\sec^2 \theta} d\theta \\ & = \frac{1}{\sqrt{24}} \left[ \theta \right]_{\tan^{-1} \frac{6}{\sqrt{24}}} ^{\tan^{-1} \frac{11}{\sqrt{24}}} \\ & = \frac{1}{\sqrt{24}} \left( \tan^{-1} \frac{11}{\sqrt{24}} - \tan^{-1} \frac{6}{\sqrt{24}} \right) \\ & = \frac{1}{2\sqrt{6}} \tan^{-1} \left(\frac{\frac{5}{\sqrt{24}}}{1+ \frac{66}{24}} \right) \\ & = \frac{1}{2\sqrt{6}} \tan^{-1} \left(\frac{5 \sqrt{24}}{90} \right) \\ & = \frac{1}{2\sqrt{6}} \cot^{-1} \left(\frac{18}{\sqrt{24}} \right) \\ & = \frac{1}{2\sqrt{6}} \cot^{-1} \left(3 \sqrt{\frac{3}{2}} \right) \end{aligned}

a + b + c + d = 3 + 3 + 2 + 6 = 14 \Rightarrow a+b+c+d = 3+3+2+6 = \boxed{14}

Note: \color{#3D99F6}{\text{Note:}}

5 x 2 + 2 x + 5 = 5 ( x 2 + 2 x 5 + 1 25 ) 1 5 + 5 = 5 ( x + 1 5 ) 2 + 24 5 = ( 5 x + 1 ) 2 5 + 24 5 = 24 5 ( ( 5 x + 1 ) 2 24 + 1 ) \begin{aligned} 5x^2+2x+5 & = 5\left(x^2 + \frac{2x}{5} + \frac{1}{25} \right) - \frac{1}{5} + 5 \\ & = 5\left(x + \frac{1}{5} \right)^2 + \frac{24}{5} \\ & = \frac{\left(5x + 1 \right)^2}{5} + \frac{24}{5} \\ & = \frac{24}{5} \left(\frac{(5x+1)^2}{24} +1 \right) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...