Who's up to the challenge? 27

Calculus Level 5

0 1 0 1 { x y } { y x } d x d y = A ζ ( B ) C \large \displaystyle\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \left \{ \frac { x }{ y } \right\} \left \{ \frac { y }{ x } \right \} \, dxdy=A-\dfrac { \zeta (B) }{ C } } }

The equation above holds true for positive integers A , B A,B and C C . Find A + B + C A+B+C .

Notations :


this is a part of Who's up to the challenge?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hamza A
Apr 5, 2016

this is a result of this ultimate generalized form

0 1 0 1 { x y } a { y x } b d x d y = a ! 2 ( b + 1 ) ! n = 1 ( a + n ) ! ( b + n ) ! ( ζ ( a + n + 1 ) 1 ) + b ! 2 ( a + 1 ) ! n = 1 ( b + n ) ! ( a + n ) ! ( ζ ( b + n + 1 ) 1 ) \displaystyle\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \left\{ \frac { x }{ y } \right\} ^{ a }\left\{ \frac { y }{ x } \right\} ^{ b }dxdy } } =\frac { a! }{ 2(b+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (a+n)! }{ (b+n)! } (\zeta (a+n+1)-1) } +\frac { b! }{ 2(a+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (b+n)! }{ (a+n)! } } (\zeta (b+n+1)-1)

we let x y = u \frac { x }{ y } =u then the integral converts to

0 1 x x { u } a { 1 u } b d u u 2 \displaystyle\int _{ 0 }^{ 1 }{ x\int _{ x }^{ \infty }{ \{ u\} ^{ a }\left\{ \frac { 1 }{ u } \right\} ^{ b }\frac { du }{ { u }^{ 2 } } } }

integrating by parts we get

0 1 x x { u } a { 1 u } b d u u 2 = ( x 2 2 x { u } a { 1 u } b d u u 2 ) x = 0 x = 1 + 1 2 0 1 x a { 1 x } b d x = 1 2 0 1 x b { 1 x } a d x + 1 2 0 1 x a { 1 x } b d x \displaystyle\int _{ 0 }^{ 1 }{ x\int _{ x }^{ \infty }{ \{ u\} ^{ a }\left\{ \frac { 1 }{ u } \right\} ^{ b }\frac { du }{ { u }^{ 2 } } } } =\left( \frac { { x }^{ 2 } }{ 2 } \displaystyle\int _{ x }^{ \infty }{ \{ u\} ^{ a }\left\{ \frac { 1 }{ u } \right\} ^{ b }\frac { du }{ { u }^{ 2 } } } \right)\Big|_{x=0}^{x=1} +\frac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ 1 }{ { x }^{ a }\left\{ \frac { 1 }{ x } \right\} ^{ b }dx } =\\ \frac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ 1 }{ { x }^{ b }\left\{ \frac { 1 }{ x } \right\} ^{ a }dx } +\frac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ 1 }{ { x }^{ a }\left\{ \frac { 1 }{ x } \right\} ^{ b }dx }

see this for the evaluation of the above integrals

putting that in we get

0 1 0 1 { x y } a { y x } b d x d y = a ! 2 ( b + 1 ) ! n = 1 ( a + n ) ! ( b + n ) ! ( ζ ( a + n + 1 ) 1 ) + b ! 2 ( a + 1 ) ! n = 1 ( b + n ) ! ( a + n ) ! ( ζ ( b + n + 1 ) 1 ) \displaystyle\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \left\{ \frac { x }{ y } \right\} ^{ a }\left\{ \frac { y }{ x } \right\} ^{ b }dxdy } } =\frac { a! }{ 2(b+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (a+n)! }{ (b+n)! } (\zeta (a+n+1)-1) } +\frac { b! }{ 2(a+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (b+n)! }{ (a+n)! } } (\zeta (b+n+1)-1)

putting a = b = 1 a=b=1 we get 0 1 0 1 { x y } { y x } d x d y = 1 ζ ( 2 ) 2 \boxed{ \large \displaystyle\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \left \{ \frac { x }{ y } \right\} \left \{ \frac { y }{ x } \right \} \, dxdy=1-\dfrac { \zeta (2) }{ 2 } } } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...