∫ 0 1 ∫ 0 1 x { 1 − x y 1 } d x d y = A − C ζ ( B )
If the equation above holds true for positive integers A , B and C , find A × B × C .
Notations :
{ ⋅ } denotes the fractional part function .
ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I like your complexity Sir. I hope you will teach me to compute higher calculus ⌣ ¨
Let us substitute x y = t ⟹ x d y = d t Hence we have the integral:- ∫ 0 1 ∫ 0 x { 1 − t 1 } dt dx
Now let us change the order of integration(i.e we want to perform the integral wrt x first and then t )
Hence we have :-
∫ 0 1 ∫ 1 t { 1 − t 1 } dx dt = ∫ 0 1 ( 1 − t ) { 1 − t 1 } d t
Now substituting z = 1 − t we have :-
∫ 0 1 z { z 1 } d z .
We know { x } = x − ⌊ x ⌋ . Hence we have :-
∫ 0 1 d z − ∫ 0 1 z ⌊ z 1 ⌋ d z
Now the integral ∫ 0 1 z ⌊ z 1 ⌋ d z can be represented as an infinite sum.
For r ∈ N
When r + 1 1 < z < r 1 then r < z 1 < r + 1 ⟹ ⌊ z 1 ⌋ = r . So we have :-
r = 1 ∑ ∞ ∫ r + 1 1 r 1 r ⋅ z d z = 2 1 r = 1 ∑ ∞ r ( r 2 1 − ( r + 1 ) 2 1 )
= 2 1 r = 1 ∑ ∞ ( r 1 − r + 1 1 + ( r + 1 ) 2 1 ) = 2 ζ ( 2 )
Hence our answer is 1 − 2 ζ ( 2 ) .
Problem Loading...
Note Loading...
Set Loading...
The substitution u = 1 − x y gives ∫ 0 1 x { 1 − x y 1 } d y = ∫ 1 − x 1 { u − 1 } d u for any 0 < x < 1 , and hence I = = ∫ 0 1 ∫ 0 1 x { 1 − x y 1 } d x d y = ∫ 0 1 d x ∫ 1 − x 1 { u − 1 } d u ∫ 0 1 d u ∫ 1 − u 1 { u − 1 } d x = ∫ 0 1 u { u − 1 } d u = ∫ 1 ∞ { v } v − 3 d v using the substitution u = v − 1 . Thus I = = n = 1 ∑ ∞ ∫ 0 1 ( n + v ) 3 v d v = n = 1 ∑ ∞ [ − n + v 1 + 2 ( n + v ) 2 n ] 0 1 n = 1 ∑ ∞ ( 2 n 1 − 2 ( n + 1 ) 1 − 2 ( n + 1 ) 2 1 ) = 2 1 − 2 1 n = 2 ∑ ∞ n 2 1 = 1 − 2 1 ζ ( 2 ) making the answer 1 × 2 × 2 = 4 .