Who's up to the challenge? 28

Calculus Level 5

0 1 0 1 { k x y } { 1 x } { 1 y } d x d y = H U ( M M 1 γ U 1 ) S \displaystyle\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \left\{ \dfrac { k }{ x-y } \right\} \left\{ \dfrac { 1 }{ x } \right\} \left\{ \dfrac { 1 }{ y } \right\} \, dx\; dy } } =\dfrac { H }{ U } (M-{ M }_{ 1 }\gamma ^{ U_{ 1 } })^{ S }

Let k k be a positive real number that satisfy the equation above, where H , U , M , M 1 , U 1 , S H,U,M,M_1,U_1,S are positive integers and H , U H,U coprime.

Find H + U + M + M 1 + U 1 + S H+U+M+M_1+U_1+S .

Notations :


this is a part of Who's up to the challenge?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 6, 2016

Using the symmetry in x x and y y in the integrand, I = 0 1 0 1 { k x y } { 1 x } { 1 y } d x d y = 1 2 0 1 0 1 ( { k x y } + { k y x } ) { 1 x } { 1 y } d x d y = 1 2 0 1 0 1 { 1 x } { 1 y } d x d y = 1 2 ( 0 1 { x 1 } d x ) 2 \begin{array}{rcl} I & = & \displaystyle \int_0^1 \int_0^1 \left\{\frac{k}{x-y}\right\} \left\{\frac{1}{x}\right\}\left\{\frac{1}{y}\right\}\,dx\,dy \\ & = & \displaystyle \frac12\int_0^1 \int_0^1\left( \left\{\frac{k}{x-y}\right\} + \left\{ \frac{k}{y-x}\right\} \right) \left\{\frac{1}{x}\right\}\left\{\frac{1}{y}\right\}\,dx\,dy \\ & = & \displaystyle\frac12 \int_0^1 \int_0^1 \left\{\frac{1}{x}\right\} \left\{\frac{1}{y}\right\}\,dx\,dy \\ & = & \displaystyle \frac12\left(\int_0^1 \big\{ x^{-1}\big\}\,dx\right)^2 \end{array} using the fact that { u } + { u } = 1 \{u\} + \{-u\} = 1 . Then 0 1 { x 1 } d x = 1 { y } y 2 d y = n = 1 0 1 y ( n + y ) 2 d y = n = 1 [ ln ( n + y ) + n n + y ] 0 1 = lim N n = 1 N ( ln ( n + 1 ) ln n 1 n + 1 ) = lim N ( ln ( N + 1 ) n = 1 N 1 n + 1 ) = 1 γ . \begin{array}{rcl} \displaystyle \int_0^1 \big\{ x^{-1} \big\}\,dx & = & \displaystyle \int_1^\infty \big\{ y \big\} y^{-2}\,dy \\ & = & \displaystyle \sum_{n=1}^\infty \int_0^1 \frac{y}{(n+y)^2} \,dy \; = \; \sum_{n=1}^\infty \Big[ \ln(n+y) + \frac{n}{n+y} \Big]_0^1 \\ & = & \displaystyle \lim_{N \to \infty}\sum_{n=1}^N \left( \ln(n+1) - \ln n - \frac{1}{n+1} \right) \\ & = & \displaystyle \lim_{N \to \infty} \left( \ln(N+1) - \sum_{n=1}^N \frac{1}{n+1} \right) \; =\; 1 - \gamma \;. \end{array} Thus I = 1 2 ( 1 γ ) 2 I \,=\, \tfrac12(1 - \gamma)^2 , making the answer 1 + 2 + 1 + 1 + 1 + 1 + 2 = 8 1 + 2 + 1 + 1 + 1 + 1 + 2 = \boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...