Who's up to the challenge? 30

Calculus Level 5

n = 2 1 n 4 n 3 = ψ ( H ) ( U ) M + M 1 π U 1 S \large \displaystyle\sum _{ n=2 }^{ \infty }{ \dfrac { 1 }{ { n }^{ 4 }-{ n }^{ 3 } } } =\dfrac { { \psi }^{ (H) }(U) }{ M } +{ M }_{ 1 }-\frac { { \pi }^{ { U }_{ 1 } } }{ S }

The equation above holds true for positive integers
H , U , M , M 1 , U 1 H,U,M,M_1,U_1 and S S . Find H + U + M + M 1 + U 1 + S H+U+M+M_1+U_1+S .

Notation : ψ ( n ) ( ) \psi^{(n)}(\cdot) denotes the n th n^\text{th} derivative of the Digamma function .


this is a part of Who's up to the challenge?


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 6, 2016

n = 2 1 n 4 n 3 = n = 2 [ 1 n 1 1 n 1 n 2 1 n 3 ] = 1 n = 2 n 2 n = 2 n 3 = 3 ζ ( 2 ) ζ ( 3 ) = 1 2 ψ ( 1 ) + 3 1 6 π 2 \begin{array}{rcl} \displaystyle \sum_{n=2}^\infty \frac{1}{n^4 - n^3} & = & \displaystyle \sum_{n=2}^\infty \Big[\frac{1}{n-1} - \frac{1}{n} - \frac{1}{n^2} - \frac{1}{n^3}\Big] \; = \; 1 - \sum_{n=2}^\infty n^{-2} - \sum_{n=2}^\infty n^{-3} \\ & = & 3 - \zeta(2) - \zeta(3) \; = \; \tfrac12 \psi''(1) + 3 - \tfrac16\pi^2 \end{array} making the answer 2 + 1 + 2 + 3 + 2 + 6 = 16 2 + 1 + 2 + 3 + 2 + 6 = \boxed{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...