Who's up to the challenge? 33

Calculus Level 5

0 1 2 x log 2 x d x = H γ li ( U ) + M ln ( ln M 1 ) ( ln S ) U 1 \def\li{\text{li}\,} \large \displaystyle\int _{ 0 }^{ 1 }{ { 2 }^{ x }\log _{ 2 }{ x } \, dx } =\dfrac { H\gamma -\li(U)+M\ln { (\ln { { M }_{ 1 } } ) } }{ (\ln S)^{U_1} }

The equation above holds true for positive integers H , U , M , M 1 , U 1 , S H,U,M,M_1,U_1,S . Find H + U + M + M 1 + U 1 + S H+U+M+M_1+U_1+S .

Notations :


This problem is part of the set: Who's up to the challenge? .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The key observation is to write the integral as I = 1 / a 0 1 e a x ln x d x = 1 a n 0 a n 0 1 x n ln x d x I=1/a\int_{0}^1 e^{ax} \ln x dx\\=\frac{1}{a}\sum_{n\ge 0}a^n \int_{0}^1 x^n \ln x dx where a = ln 2 a=\ln 2 . Now, observe that 0 1 x n ln x d x = 0 e ( n + 1 ) x x d x = 1 ( n + 1 ) 2 \int_{0}^1 x^n \ln x dx=-\int_{0}^{\infty} e^{-(n+1)x}x dx=-\frac{1}{(n+1)^2} Thus, the integral becomes, 1 a n 0 a n n ! ( n + 1 ) 2 = 1 a 2 n 1 a n n ! -\frac{1}{a}\sum_{n\ge 0}\frac{a^n}{n!(n+1)^2}=-\frac{1}{a^2}\sum_{n\ge 1}\frac{a^n}{n!} Using a series representation of l i ( x ) \mathrm{li}(x) , we get l i ( e x ) = γ + ln x + n 1 x n n n ! \mathrm{li}(e^x)=\gamma+\ln |x|+\sum_{n\ge 1}\frac{x^n}{nn!} Hence, the expression results into γ + ln ( ln 2 ) l i ( 2 ) ( ln 2 ) 2 \frac{\gamma+\ln(\ln 2)-\mathrm{li}(2)}{(\ln 2)^2} which results into the answer 10 \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...