Who's up to the challenge? 38

Calculus Level 5

n = 1 H n ln n γ n = γ t a h γ i + π n i 1 \large \displaystyle\sum _{ n=1 }^{ \infty }{ \dfrac { { H }_{ n }-\ln { n } -\gamma }{ n } } =-\dfrac { { \gamma }^{ t } }{ a } -h{ \gamma }_{ i }+\dfrac { { \pi }^{ n } }{ { i }_{ 1 } }

The equation above holds true for positive integers t , a , h , i , n t,a,h,i, n and i 1 i_1 . Find t + a + h + i + n + i 1 t+a+h+i+n+i_1 .

Notations :

  • H n H_n denotes the n th n^\text{th} harmonic number .
  • γ \gamma denotes the Euler-Mascheroni constant , γ 0.5772 \gamma \approx 0.5772 .
  • γ n \gamma_n denotes the n th n^\text{th} Stieltjes constant.


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ariel Gershon
Apr 21, 2016

My method is to find a partial sum formula. Since partial sums have finitely many terms, we can break up the sum into three parts:

(1) First let's find a formula for n = 1 m H n n \displaystyle\sum_{n = 1}^{m} \dfrac{H_n}{n} . This sum expands to n = 1 m k = 1 n 1 k 1 n = k < n m 1 k 1 n + k = 1 m 1 k 2 \displaystyle\sum_{n = 1}^{m}\sum_{k = 1}^{n} \dfrac{1}{k}\dfrac{1}{n} = \sum_{k < n \le m} \dfrac{1}{k}\dfrac{1}{n} + \sum_{k = 1}^{m} \dfrac{1}{k^2} . This is close to the formula for H m 2 H_m^2 , which is: H m 2 = n = 1 m k = 1 m 1 k 1 n = k < n m 1 k 1 n + n < k m 1 k 1 n + k = 1 m 1 k 2 = 2 ( n = 1 m H n n ) k = 1 m 1 k 2 H_m^2 = \displaystyle\sum_{n = 1}^{m}\sum_{k = 1}^{m} \dfrac{1}{k}\dfrac{1}{n} = \sum_{k < n \le m} \dfrac{1}{k}\dfrac{1}{n} + \sum_{n < k \le m} \dfrac{1}{k}\dfrac{1}{n} + \sum_{k = 1}^{m} \dfrac{1}{k^2} = 2\left(\displaystyle\sum_{n = 1}^{m} \dfrac{H_n}{n}\right) - \displaystyle\sum_{k = 1}^{m} \dfrac{1}{k^2} Hence, n = 1 m H n n = 1 2 ( H m 2 + k = 1 m 1 k 2 ) \displaystyle\sum_{n = 1}^{m} \dfrac{H_n}{n} = \dfrac{1}{2}\left(H_{m}^2 + \displaystyle\sum_{k=1}^{m} \dfrac{1}{k^2}\right)

(2) To find the formula for n = 1 m ( ln ( n ) n ) \displaystyle\sum_{n = 1}^{m} \left(- \dfrac{\ln(n)}{n}\right) , we need to use the generalized Stieltjes constant: γ 1 ( m ) = lim r [ k = m r ln ( k ) k ln 2 ( r ) 2 ] \gamma_{1}(m) = \lim_{r \to \infty} \left[ \sum_{k = m}^{r} \frac{\ln(k)}{k} - \frac{\ln^2(r)}{2} \right] Observe that: γ 1 ( m + 1 ) γ 1 ( 1 ) = lim r [ k = m + 1 r ln ( k ) k k = 1 r ln ( k ) k ] = k = 1 m ln ( n ) n \gamma_{1}(m+1) - \gamma_{1}(1) = \lim_{r \to \infty} \left[ \sum_{k = m+1}^{r} \frac{\ln(k)}{k} - \sum_{k = 1}^{r} \frac{\ln(k)}{k} \right] = -\sum_{k = 1}^{m} \dfrac{\ln(n)}{n} Therefore, n = 1 m ( ln ( n ) n ) = γ 1 ( m + 1 ) γ 1 \displaystyle\sum_{n = 1}^{m} \left(- \dfrac{\ln(n)}{n}\right) = \gamma_{1}(m+1) - \gamma_1

(3) The formula for n = 1 m ( γ n ) \displaystyle\sum_{n = 1}^{m} \left(- \dfrac{\gamma}{n}\right) is obviously γ H m -\gamma H_m

SO, putting all of this together, we get our total partial sum formula: n = 1 m H n ln ( n ) γ n = 1 2 ( H m 2 + k = 1 m 1 k 2 ) + γ 1 ( m + 1 ) γ 1 γ H m \sum_{n=1}^{m} \dfrac{H_n - \ln(n) - \gamma}{n} = \dfrac{1}{2}\left(H_{m}^2 + \displaystyle\sum_{k=1}^{m} \dfrac{1}{k^2}\right) + \gamma_{1}(m+1) - \gamma_1 -\gamma H_m = ( H m γ ) 2 2 + γ 1 ( m + 1 ) γ 2 2 γ 1 + 1 2 k = 1 m 1 k 2 = \dfrac{(H_m - \gamma)^2}{2} + \gamma_{1}(m+1) - \dfrac{\gamma^2}{2} - \gamma_1 + \dfrac{1}{2}\sum_{k=1}^{m} \dfrac{1}{k^2}

If we let m m approach infinity, the last three terms give us the desired result: γ 2 2 γ 1 + π 2 12 \boxed{-\dfrac{\gamma^2}{2} - \gamma_1 + \dfrac{\pi^2}{12}}

All that remains is to prove that lim m ( ( H m γ ) 2 2 + γ 1 ( m + 1 ) ) = 0 \lim_{m \to\infty} \left(\dfrac{(H_m - \gamma)^2}{2} + \gamma_{1}(m+1)\right) = 0 : lim m ( ( H m γ ) 2 2 + γ 1 ( m + 1 ) ) \lim_{m \to\infty} \left(\dfrac{(H_m - \gamma)^2}{2} + \gamma_{1}(m+1)\right) = lim m [ ( ( H m γ ) 2 2 ln 2 ( m ) 2 ) + ln 2 ( m ) 2 + lim r ( k = m + 1 r ln ( k ) k ln 2 ( r ) 2 ) ] = \lim_{m \to\infty} \left[\left(\dfrac{(H_m - \gamma)^2}{2} - \dfrac{\ln^2(m)}{2}\right) + \dfrac{\ln^2(m)}{2} + \lim_{r \to \infty} \left( \sum_{k = m+1}^{r} \frac{\ln(k)}{k} - \frac{\ln^2(r)}{2}\right) \right] = lim m ( ( H m γ ) 2 2 ln 2 ( m ) 2 ) + lim m ( ln 2 ( m ) 2 k = 1 m ln ( k ) k ) + lim r ( k = 1 r ln ( k ) k ln 2 ( r ) 2 ) = \lim_{m \to\infty} \left(\dfrac{(H_m - \gamma)^2}{2} - \dfrac{\ln^2(m)}{2}\right) + \lim_{m \to\infty} \left(\dfrac{\ln^2(m)}{2} - \sum_{k = 1}^{m} \frac{\ln(k)}{k} \right) + \lim_{r \to \infty} \left( \sum_{k = 1}^{r} \frac{\ln(k)}{k} - \frac{\ln^2(r)}{2}\right) = lim m ( ( H m γ ) 2 2 ln 2 ( m ) 2 ) γ 1 + γ 1 = 1 2 lim m ( ( H m γ ) 2 ln 2 ( m ) ) = \lim_{m \to\infty} \left(\dfrac{(H_m - \gamma)^2}{2} - \dfrac{\ln^2(m)}{2}\right) - \gamma_1 + \gamma_1 = \dfrac{1}{2}\lim_{m \to\infty} \left((H_m - \gamma)^2 - \ln^2(m)\right) Now to prove that this limit is equal to zero, we need to know that lim m m ( H m ln ( m ) γ ) = 1 2 \lim_{m\to\infty} m\left(H_m - \ln(m) - \gamma\right) = \dfrac{1}{2} . I'll prove this at the end. 1 2 lim m ( ( H m γ ) 2 ln 2 ( m ) ) = 1 2 lim m m ( H m ln ( m ) γ ) ( H m + ln ( m ) γ m ) \dfrac{1}{2}\lim_{m \to\infty} \left((H_m - \gamma)^2 - \ln^2(m)\right) = \dfrac{1}{2}\lim_{m \to\infty} m\left(H_m - \ln(m) - \gamma\right)\left(\dfrac{H_m + \ln(m) - \gamma}{m}\right) = 1 2 1 2 lim m ( H m + ln ( m ) γ m ) = \dfrac{1}{2} \cdot \dfrac{1}{2} \lim_{m \to \infty} \left(\dfrac{H_m + \ln(m) - \gamma}{m}\right) We can show using the Squeeze Theorem that lim m ( H m + ln ( m ) γ m ) = 0 \lim_{m \to \infty} \left(\dfrac{H_m + \ln(m) - \gamma}{m}\right) = 0 . Thus lim m ( ( H m γ ) 2 2 + γ 1 ( m + 1 ) ) = 0 \lim_{m \to\infty} \left(\dfrac{(H_m - \gamma)^2}{2} + \gamma_{1}(m+1)\right) = 0 . \square

Now, as promised, I will prove that lim m m ( H m ln ( m ) γ ) = 1 2 \lim_{m\to\infty} m\left(H_m - \ln(m) - \gamma\right) = \dfrac{1}{2} :

lim m m ( H m ln ( m ) γ ) = lim m ψ ( m + 1 ) ln ( m ) 1 / m \lim_{m\to\infty} m\left(H_m - \ln(m) - \gamma\right) = \lim_{m\to\infty} \dfrac{\psi(m+1) - \ln(m)}{1/m} The antiderivative of the numerator is ln ( Γ ( m + 1 ) ) m ln ( m ) + m = ln ( m ! e m m m ) \ln(\Gamma(m+1)) - m\ln(m) + m = \ln\left(m! \dfrac{e^m}{m^m}\right) . By Stirling's Approximation, this is asymptotic to ln ( 2 π m ) \ln(\sqrt{2\pi m}) (and therefore approaches infinity). Meanwhile, the antiderivative of the denominator is ln ( m ) \ln(m) which also approaches infinity. Therefore, by L'Hopital's rule (in reverse), we have: lim m ψ ( m + 1 ) ln ( m ) 1 / m = lim m ln ( m ! e m m m ) ln ( m ) = lim m log m ( 2 π m ) = 1 2 \lim_{m\to\infty} \dfrac{\psi(m+1) - \ln(m)}{1/m} = \lim_{m\to\infty} \dfrac{\ln\left(m! \dfrac{e^m}{m^m}\right)}{\ln(m)} = \lim_{m\to\infty} \log_m\left(\sqrt{2\pi m}\right) = \dfrac{1}{2}

Wow!

thanks for taking the time to write the solution! :)

Hamza A - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...