a → 1 − lim k = 1 ∑ ∞ n = 1 ∑ ∞ ( − 1 ) k + n k + n H k H n a k + n = b ζ ( a ) − f ( ln d ) c + i ( ln h ) g + j ln k − l
The equation above holds true, where H n denotes the n th harmonic number and a , b , c , … , k , l are positive integers.
Find a + b + c + d + f + g + h + i + j + k + l − 1 .
Notation : ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Using the generating function of the Harmonic numbers n = 1 ∑ ∞ H n x n = − 1 − x ln ( 1 − x ) ∣ x ∣ < 1 , we can write k = 1 ∑ ∞ n = 1 ∑ ∞ ( − 1 ) k + n k + n H k H n a k + n = ∫ 0 a ( 1 + x ) 2 x ln 2 ( 1 + x ) d x for any 0 < a < 1 , and hence that a → 1 − lim k = 1 ∑ ∞ n = 1 ∑ ∞ ( − 1 ) k + n k + n H k H n a k + n = = = = ∫ 0 1 ( 1 + x ) 2 x ln 2 ( 1 + x ) d x ∫ 0 1 ln 2 ( 1 + x ) ( x 1 − x + 1 1 − ( x + 1 ) 2 1 ) d x ∫ 1 2 ln 2 x ( x − 1 1 − x 1 − x 2 1 ) d x n = 3 ∑ ∞ ∫ 1 2 x − n ln 2 x d x A couple of rounds of integration by parts gives ∫ 1 2 x − n ln 2 x d x = ( n − 1 ) 3 2 − 2 2 − n − ( n − 1 ) ( ln 2 ) 2 2 − n − ( n − 1 ) 2 ( ln 2 ) 2 2 1 − n for all n ≥ 3 , and hence a → 1 − lim k = 1 ∑ ∞ n = 1 ∑ ∞ ( − 1 ) k + n k + n H k H n a k + n = 4 1 ζ ( 3 ) − 3 1 ( ln 2 ) 3 + 2 1 ( ln 2 ) 2 + ln 2 − 1 leading to the answer 3 + 4 + 3 + 2 + 3 + 2 + 2 + 2 + 1 + 2 + 1 − 1 = 2 4 .