Who's up to the challenge? 40

Calculus Level 5

n = 1 ( 1 ) n ln n n 2 = ζ ( a ) b ( ln c π d ln A + f γ ) \large \displaystyle\sum _{ n=1 }^{ \infty }{ { (-1) }^{ n }\dfrac { \ln { n } }{ { n }^{ 2 } } } =\dfrac { \zeta (a) }{ b } \left( \ln { c\pi } -d\ln { A } +f\gamma \right)

The equation above holds true for positive integers a , b , c , d a,b,c,d and f f . Find a + b + c + d + f a+b+c+d+f .

Notations :


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 19, 2016

We see that n = 1 ( 1 ) n n s = n = 1 1 n s + 2 n = 1 1 ( 2 n ) s = ( 1 2 1 s ) ζ ( s ) \sum_{n=1}^\infty \frac{(-1)^n}{n^s} \; = \; -\sum_{n=1}^\infty \frac{1}{n^s} + 2\sum_{n=1}^\infty \frac{1}{(2n)^s} \; =\; -\big(1 - 2^{1-s}\big)\zeta(s) and hence n = 1 ( 1 ) n ln n n s = d d s [ ( 1 2 1 s ) ζ ( s ) ] = ( 1 2 1 s ) ζ ( s ) + ( ln 2 ) 2 1 s ζ ( s ) \sum_{n=1}^\infty (-1)^n \frac{\ln n}{n^s} \; = \; \frac{d}{ds}\big[\big(1 - 2^{1-s}\big)\zeta(s)\big] \; =\; \big(1 - 2^{1-s}\big)\zeta'(s) + (\ln 2) 2^{1-s}\zeta(s) so that n = 1 ( 1 ) n ln n n 2 = 1 2 [ ζ ( 2 ) + ( ln 2 ) ζ ( 2 ) ] = ζ ( 2 ) 2 [ ζ ( 2 ) ζ ( 2 ) + ln 2 ] = ζ ( 2 ) 2 [ γ + ln ( 2 π ) 12 ln A + ln 2 ] = ζ ( 2 ) 2 [ ln ( 4 π ) 12 ln A + γ ] \begin{array}{rcl} \displaystyle \sum_{n=1}^\infty (-1)^n \frac{\ln n}{n^2} & = & \displaystyle \tfrac12\big[\zeta'(2) + (\ln 2) \zeta(2)\big] \; = \; \tfrac{\zeta(2)}{2}\Big[\tfrac{\zeta'(2)}{\zeta(2)} + \ln 2\Big] \\ & = & \displaystyle \tfrac{\zeta(2)}{2}\big[ \gamma + \ln(2\pi) - 12\ln A + \ln2 \big] \; = \; \tfrac{\zeta(2)}{2}\big[\ln(4\pi) - 12\ln A + \gamma\big] \end{array} making the answer 2 + 2 + 4 + 12 + 1 = 21 2 + 2 + 4 + 12 + 1 =\boxed{21} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...