Who's up to the challenge? 45

Calculus Level 5

0 1 ln ( 1 cos x ) d x \large \displaystyle\int _{ 0 }^{ 1 }{ \ln { \left( 1-\cos { x } \right)\, dx } } The above integral has the form:

i a i π b c + ln ( d ( e f i g ) h ) + ln ( j cos k ) + l i Li m ( e n i ) \dfrac { i }{ a } -\dfrac { i{ \pi }^{ b } }{ c } +\ln { \left( \dfrac { d }{ ({ e }^{ fi }-g)^{ h } } \right) } +\ln { \left( j-\cos { k } \right) } +l\cdot i\cdot \text{Li}_m(e^{ni})

for positive integers a , b , c , d , f , g , h , j , k , l , m a,b,c,d,f,g,h,j,k,l,m and n n .

Find a + b + c + d + f + g + h + j + k + l + m + n a+b+c+d+f+g+h+j+k+l+m+n .

Notations :

  • i = 1 i=\sqrt{-1}

  • Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n . { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \frac { { a }^{ k } }{ { k }^{ n } } }.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ariel Gershon
Apr 26, 2016

Using Integration by Parts, ln ( 1 cos ( x ) ) d x = x ln ( 1 cos ( x ) ) x sin ( x ) 1 cos ( x ) d x \int \ln(1 - \cos(x)) dx = x \ln(1 - \cos(x)) - \int \frac{x \sin(x)}{1 - \cos(x)} dx = x ln ( 1 cos ( x ) ) x cot ( x 2 ) d x = x \ln(1 - \cos(x)) - \int x \cot\left(\frac{x}{2}\right)dx = x ln ( 1 cos ( x ) ) i x coth ( i x 2 ) d x = x \ln(1 - \cos(x)) - \int ix \coth\left(\frac{ix}{2}\right)dx = x ln ( 1 cos ( x ) ) + i x ( 1 + e i x 1 e i x ) d x = x \ln(1 - \cos(x)) + \int ix \left( \frac{1 + e^{ix}}{1 - e^{ix}} \right) dx = x ln ( 1 cos ( x ) ) + i x d x 2 x ( i e i x 1 e i x ) d x = x \ln(1 - \cos(x)) + \int ix \cdot dx -2 \int x \left( \frac{-i e^{ix}}{1 - e^{ix}} \right) dx = x ln ( 1 cos ( x ) ) + i x 2 2 2 x δ δ x { ln ( 1 e i x ) } d x = x \ln(1 - \cos(x)) + \frac{i x^2}{2} - 2 \int x \cdot \frac{\delta}{\delta x} \left\{\ln(1 - e^{ix})\right\} dx Let's use Integration by Parts again: = x ln ( 1 cos ( x ) ) + i x 2 2 2 [ x ln ( 1 e i x ) ln ( 1 e i x ) d x ] = x \ln(1 - \cos(x)) + \frac{i x^2}{2} - 2\left[x\ln(1 - e^{ix}) - \int \ln(1 - e^{ix}) dx \right] = x ln ( 1 cos ( x ) ) + i x 2 2 2 x ln ( 1 e i x ) 2 k = 1 e k i x k d x = x \ln(1 - \cos(x)) + \frac{i x^2}{2} - 2x\ln(1 - e^{ix}) -2 \int \sum_{k = 1}^{\infty} \frac{e^{kix}}{k}dx = x ln ( 1 cos ( x ) ) + i x 2 2 2 x ln ( 1 e i x ) 2 k = 1 e k i x k ( k i ) + C = x \ln(1 - \cos(x)) + \frac{i x^2}{2} - 2x\ln(1 - e^{ix}) -2 \sum_{k = 1}^{\infty} \frac{e^{kix}}{k(ki)} + C = x ln ( 1 cos ( x ) ) + i x 2 2 2 x ln ( 1 e i x ) + 2 i k = 1 ( e i x ) k k 2 + C = x \ln(1 - \cos(x)) + \frac{i x^2}{2} - 2x\ln(1 - e^{ix}) + 2i \sum_{k = 1}^{\infty} \frac{(e^{ix})^k}{k^2} + C = x ln ( 1 cos ( x ) ) + i x 2 2 2 x ln ( 1 e i x ) + 2 i Li 2 ( e i x ) + C = x \ln(1 - \cos(x)) + \frac{i x^2}{2} - 2x\ln(1 - e^{ix}) + 2i \cdot \text{Li}_2(e^{ix}) + C Therefore, 0 1 ln ( 1 cos ( x ) ) d x \int_{0}^{1} \ln(1 - \cos(x)) dx = ln ( 1 cos ( 1 ) ) + i 2 2 ln ( 1 e i ) + 2 i Li 2 ( e i ) [ lim x 0 [ x ln ( 1 cos ( x ) ) 2 x ln ( 1 e i x ) ] + 2 i Li 2 ( 1 ) ] = \ln(1 - \cos(1)) + \frac{i}{2} - 2\ln(1 - e^{i}) + 2i \cdot \text{Li}_2(e^{i}) - \left[ \lim_{x\to 0} [x \ln(1 - \cos(x)) - 2x\ln(1 - e^{ix})] + 2i \cdot \text{Li}_2(1) \right] = ln ( 1 cos ( 1 ) ) + i 2 2 ln ( 1 e i ) + 2 i Li 2 ( e i ) π 2 3 i = \ln(1 - \cos(1)) + \frac{i}{2} - 2\ln(1 - e^{i}) + 2i \cdot \text{Li}_2(e^{i}) - \frac{\pi^2}{3}i = i 2 i π 2 3 + ln ( 1 ( e i 1 ) 2 ) + ln ( 1 cos ( 1 ) ) + 2 i Li 2 ( e i ) = \boxed{\dfrac{i}{2} - \dfrac{i \pi^2}{3} + \ln\left(\dfrac{1}{(e^i-1)^2}\right) + \ln(1 - \cos(1)) + 2i \cdot \text{Li}_2(e^{i})}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...