∫ 0 1 x H x d x = a + b γ − ln c π
If the equation above holds true for positive integers a , b and c , find a + b + c .
Notations :
H n denotes the n th harmonic number , H n = 1 + 2 1 + 3 1 + ⋯ + n 1 .
γ denotes the Euler-Mascheroni constant , γ ≈ 0 . 5 7 7 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
∫ 0 1 x H x d x ∫ 0 1 x ψ ( x ) ∫ 0 1 x H x d x = ∫ 0 1 x ( ψ ( x + 1 ) + γ ) d x = ∫ 0 1 ( x ψ ( x + 1 ) + γ ⋅ x ) d x = ∫ 0 1 ( x ψ ( x ) + 1 + γ ⋅ x ) d x u = x d u = d x d v = ψ ( x ) v = ln ( Γ ( x ) ) = x ln ( Γ ( x ) ) ∣ 0 1 − ∫ 0 1 ln ( Γ ( x ) ) d x = − 2 1 ∫ 0 1 ln ( Γ ( x ) ) + ln ( Γ ( 1 − x ) ) d x = − 2 1 ∫ 0 1 ln ( Γ ( x ) Γ ( 1 − x ) ) d x = − 2 1 ∫ 0 1 ln ( sin ( π x ) π ) d x = − 2 1 ( ∫ 0 1 ln ( π ) d x − ∫ 0 1 ln ( sin ( π x ) ) d x ) = − 2 1 ( ln ( π ) − ( − ln ( 2 ) ) ) = − ln ( 2 π ) back to original integral = − ln ( 2 π ) + 1 + 2 γ H x = ψ ( x + 1 ) + γ ψ ( x + 1 ) = ψ ( x ) + x 1 x ln ( Γ ( x ) ) ∣ 0 1 = 0 ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x Euler’s reflection formula l e t u = π x and use symmetry
Problem Loading...
Note Loading...
Set Loading...
Since H x = x k = 1 ∑ ∞ k ( k + x ) 1 x > 0 we have x H x = K → ∞ lim x k = 1 ∑ K k ( k + x ) x = K → ∞ lim x k = 1 ∑ K ( k 1 − k + x 1 ) and so, since ∫ 0 1 x k = 1 ∑ K ( k 1 − x + k 1 ) d x = = = = = = = = ∫ 0 1 ( x H K − k = 1 ∑ K x + k x ) d x ∫ 0 1 ( x H K − K + k = 1 ∑ K k + x k ) d x 2 1 H K − K + k = 1 ∑ K k [ ln ( k + x ) ] 0 1 2 1 H K − K + k = 1 ∑ K k ln ( k + 1 ) − k = 1 ∑ K k ln k 2 1 H K − K + k = 2 ∑ K + 1 ( k − 1 ) ln k − k = 1 ∑ K k ln k 2 1 H K − K + K ln ( K + 1 ) − k = 2 ∑ K ln k 2 1 [ H K − ln K ] − K + K ln ( 1 + K 1 ) + ( K + 2 1 ) ln K − ln K ! 2 1 [ H K − ln K ] + ln ( 1 + K 1 ) K − ln ( K K + 2 1 K ! × e K ) we deduce (using the Monotone Convergence Theorem) that ∫ 0 1 x H x d x = K → ∞ lim { 2 1 [ H K − ln K ] + ln ( 1 + K 1 ) K − ln ( K K + 2 1 K ! × e K ) } = 2 1 γ + 1 − ln 2 π making the answer 1 + 2 + 2 = 5 .