Who's up to the challenge? 52

Calculus Level 5

0 1 Γ ( 1 + x 2 ) Γ ( 1 x 2 ) d x = a G b π \int _{ 0 }^{ 1 }{ \Gamma \left(1+\frac { x }{ 2 } \right)\Gamma \left(1-\frac { x }{ 2 } \right) \, dx } =\frac { aG }{ b\pi }

If the equation holds true for coprime positive integers a a and b b , find a + b a+b .

Notations :

  • Γ ( ) \Gamma(\cdot) denotes the Gamma function .

  • G G denote Catalan's constant , G = n = 0 ( 1 ) n ( 2 n + 1 ) 2 0.916 \displaystyle G = \sum_{n=0}^\infty \dfrac{ (-1)^n}{(2n+1)^2} \approx 0.916 .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let us denote the integral by J \displaystyle \mathfrak{J}

J = 1 2 0 1 x Γ ( x 2 ) Γ ( 1 x 2 ) d x \displaystyle \mathfrak{J}=\frac{1}{2}\int_{0}^{1} x\Gamma(\frac{x}{2})\Gamma(1-\frac{x}{2})dx , Since 0 < x 2 < 1 0<\frac{x}{2}<1 when x ( 0 , 1 ) x\in(0,1) we have By the Reflection formulae \text{Reflection formulae} ,

J = 1 2 0 1 π x 2 sin ( π x 2 ) d x \displaystyle \mathfrak{J} = \frac{1}{2}\int_{0}^{1} \frac{\pi x}{2\sin(\frac{\pi x}{2})}dx

Substitute π x 2 = t \displaystyle\frac{\pi x}{2}=t and we have J = 2 π 0 π 2 t s i n t d t \displaystyle \mathfrak{J} = \frac{2}{\pi}\int_{0}^{\frac{\pi}{2}} \frac{t}{sint}dt

We have the identity G = 1 2 0 π 2 t s i n t d t \displaystyle G=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\frac{t}{sint}dt which turns the integral into,

J = 4 G π \displaystyle \mathfrak{J} = \boxed{\frac{4G}{\pi}}

Aaditya Lanke
Dec 28, 2016

we know by the numeric integration technique that the above integral can be evaluated as: 7/6 (by simp son's method of numeric integration) 7/6=(0.2915a)/b On multiplying normally we get the value of a/b=4 Thus we can conclude that a=4 and b=1

Hence a+b=4+1=5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...