Who's up to the challenge? 54

Calculus Level 5

2 0 1 ( ln x ) 3 Li 4 ( x ) 1 x d x = a ζ ( b ) \large -2 \int_0^1 \dfrac{ (\ln x)^3 \; \text{Li}_4 (x) }{1-x} \, dx = a \; \zeta (b)

If the equation above holds true for positive integers a a and b b , find a + b a+b .

Notations :

  • Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \dfrac { { a }^{ k } }{ { k }^{ n } } } .
  • ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

we know r = 1 x r 1 = 1 1 x \displaystyle \sum_{r=1}^{\infty} x^{r-1} = \frac{1}{1-x} , for 1 < x < 1 -1<x<1

Using the above and the definition of Polylogarithm Function we have the following series:-

2 r = 1 k = 1 0 1 x k + r 1 ln 3 ( x ) k 4 d x \displaystyle -2\sum_{r=1}^{\infty}\sum_{k=1}^{\infty}\int_{0}^{1}\frac{x^{k+r-1}\ln^{3}(x)}{k^{4}}dx

Now substituting x = e t x=e^{-t} we have :-

2 r = 1 k = 1 0 e t ( k + r 1 ) ( t ) 3 ( e t ) k 4 d t \displaystyle -2\sum_{r=1}^{\infty}\sum_{k=1}^{\infty}\int_{\infty}^{0}\frac{e^{-t(k+r-1)}(-t)^{3}(-e^{-t})}{k^{4}}dt

= 2 r = 1 k = 1 0 e t ( k + r ) t 3 k 4 d t \displaystyle =2\sum_{r=1}^{\infty}\sum_{k=1}^{\infty}\int_{0}^{\infty}\frac{e^{-t(k+r)}t^{3}}{k^{4}}dt

Now substituting t ( k + r ) = z t(k+r) = z we have:-

2 r = 1 k = 1 0 e z z 3 ( r + k ) 4 k 4 d z \displaystyle 2\sum_{r=1}^{\infty}\sum_{k=1}^{\infty}\int_{0}^{\infty}\frac{e^{-z}z^{3}}{(r+k)^{4}k^{4}}dz

= 12 r = 1 k = 1 1 k 4 ( r + k ) 4 \displaystyle = 12\sum_{r=1}^{\infty}\sum_{k=1}^{\infty}\frac{1}{k^{4}(r+k)^{4}}

12 k = 1 ( ζ ( 4 ) H k ( 4 ) ) k 4 = 12 ( ζ ( 4 ) 2 k = 1 H k ( 4 ) k 4 ) \displaystyle 12\sum_{k=1}^{\infty}\frac{\left(\zeta(4)-H_{k}^{(4)}\right)}{k^{4}} = 12\left(\zeta(4)^{2} - \sum_{k=1}^{\infty}\frac{H_{k}^{(4)}}{k^{4}}\right)

We know k = 1 H k ( s ) k s = 1 2 ( ζ ( s ) 2 + ζ ( 2 s ) ) \displaystyle \sum_{k=1}^{\infty}\frac{H_{k}^{(s)}}{k^{s}} = \frac{1}{2}\left(\zeta(s)^{2} +\zeta(2s)\right) where s 2 s\geq 2 is a positive integer.

Hence using the above we arrive at:-

12 1 2 ( ζ ( 4 ) 2 ζ ( 8 ) ) \displaystyle 12\cdot \frac{1}{2}\left(\zeta(4)^{2}-\zeta(8)\right)

Now ζ ( 4 ) = π 4 90 \displaystyle \zeta(4) =\frac{\pi^{4}}{90} and ζ ( 8 ) = π 8 9450 \displaystyle \zeta(8) = \frac{\pi^{8}}{9450} .

Using them we have our answer as 6 π 8 56700 = π 8 9450 = ζ ( 8 ) \displaystyle 6\cdot\frac{\pi^{8}}{56700} = \frac{\pi^{8}}{9450} = \zeta(8)

Here H n ( r ) H_{n}^{(r)} denotes the nth Hyperharmonic number of order r .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...