Who's up to the challenge? 56

Calculus Level 5

ln ( 1 + e 2 x ) 1 + e 3 x d x = A π C B \large \int _{ -\infty }^{ \infty }{ \dfrac { \ln { (1+{ e }^{ 2x } } ) }{ 1+{ e }^{ 3x } } \, dx } =\frac { A\pi ^{ C } }{ B }

If the equation above holds for coprime positive integers A , B A,B and an integer C C , then find A + B + C A+B+C .


The answer is 231.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The given integral can be written as I = 0 [ ln ( 1 + e 2 x ) 1 + e 3 x + ln ( 1 + e 2 x ) 1 + e 3 x ] d x = 0 [ ( 2 x + ln ( 1 + e 2 x ) ) e 3 x 1 + e 3 x + ln ( 1 + e 2 x ) 1 + e 3 x d x = 0 ln ( 1 + e 2 x ) d x + 0 2 x e 3 x 1 + e 3 x d x ] I=\int_{0}^\infty\left[\frac{\ln(1+e^{2x})}{1+e^{3x}}+\frac{\ln(1+e^{-2x})}{1+e^{-3x}}\right]dx\\=\int_{0}^\infty\left[\frac{(2x+\ln(1+e^{-2x}))e^{-3x}}{1+e^{-3x}}+\frac{\ln(1+e^{-2x})}{1+e^{-3x}}dx\\=\int_0^\infty \ln(1+e^{-2x})dx+\int_0^\infty \frac{2xe^{-3x}}{1+e^{-3x}}dx\right] Now, 0 ln ( 1 + e 2 x ) d x = x ln ( 1 + e 2 x ) 0 + 0 2 x e 2 x 1 + e 2 x d x = 1 2 0 x e x 1 + e x d x \int_0^\infty \ln(1+e^{-2x})dx=x\ln(1+e^{-2x})\left|_{0}^{\infty}\right.+\int_{0}^\infty \frac{2xe^{-2x}}{1+e^{-2x}}dx\\=\frac{1}{2}\int_{0}^{\infty}\frac{xe^{-x}}{1+e^{-x}}dx and 0 2 x e 3 x 1 + e 3 x d x = 2 9 0 x e x 1 + e x d x \int_{0}^\infty \frac{2xe^{-3x}}{1+e^{-3x}}dx=\frac{2}{9}\int_{0}^\infty \frac{xe^{-x}}{1+e^{-x}}dx Now, 0 x a e x 1 + e x d x = k 0 ( 1 ) k 0 x a e ( k + 1 ) x d x = k 0 ( 1 ) k ( k + 1 ) a + 1 Γ ( a + 1 ) = Γ ( a + 1 ) ζ ( a + 1 ) ( 1 2 a ) \int_0^{\infty}\frac{x^ae^{-x}}{1+e^{-x}}dx\\=\sum_{k\ge 0}(-1)^k\int_{0}^\infty x^ae^{-(k+1)x}dx\\=\sum_{k\ge 0}\frac{(-1)^k}{(k+1)^{a+1}}\Gamma(a+1)\\=\Gamma(a+1)\zeta(a+1)(1-2^{-a}) Thus, the integral is I = ( 1 2 + 2 9 ) Γ ( 2 ) ζ ( 2 ) ( 1 2 1 ) = 13 π 2 216 I=\left(\frac{1}{2}+\frac{2}{9}\right)\Gamma(2)\zeta(2)(1-2^{-1})=\frac{13\pi^2}{216} Thus the answer is 231 \boxed{231} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...