∫ 0 1 ∫ 0 1 ( 1 + x y ) 2 ( ln x y ) 4 d x d y = B A ζ ( C )
If the equation above holds true for positive integers A , B and C , where A and B are coprime, find A + B + C .
Notation : ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We know that ( 1 + x ) 2 1 = ∑ r = 1 ∞ x r − 1 ( − 1 ) r − 1 for − 1 < x < 1
So rewriting the double integral in a series format we have:-
∫ 0 1 ∫ 0 1 r = 1 ∑ ∞ r ( − 1 ) r − 1 x r − 1 y r − 1 ( ln ( x ) + ln ( y ) ) 4 d x d y
Using Binomial Theorem on ( ln ( x ) + ln ( y ) ) 4
we have:-
∫ 0 1 ∫ 0 1 r = 1 ∑ ∞ r ( − 1 ) r − 1 x r − 1 y r − 1 ( m = 0 ∑ 4 ( m 4 ) ( ln ( x ) ) 4 − m ( ln ( y ) ) m ) d x d y
Now let us generalize a result:-
∫ 0 1 x k − 1 ( ln ( x ) ) n d x
Substituting x = e − t we have
∫ 0 ∞ ( − 1 ) n e − t k t n d t
Again substituting k t = z we have
∫ 0 ∞ k n + 1 ( − 1 ) n e − z z n d z
= k n + 1 ( − 1 ) n Γ ( n + 1 )
= k n + 1 ( − 1 ) n n !
So solving the double integrals as iterated integrals by using the above result we have
r = 1 ∑ ∞ m = 0 ∑ 4 ( − 1 ) r − 1 ⋅ r ⋅ ( m 4 ) r 4 − m + 1 r m + 1 ( − 1 ) 4 − m ( − 1 ) m ( 4 − m ) ! m !
= r = 1 ∑ ∞ m = 0 ∑ 4 ( − 1 ) r − 1 ( m 4 ) r 5 ( 4 − m ) ! m !
= r = 1 ∑ ∞ m = 0 ∑ 4 ( − 1 ) r − 1 r 5 4 !
= r = 1 ∑ ∞ r 5 ( − 1 ) r − 1 ( 5 ⋅ 4 ! )
= r = 1 ∑ ∞ r 5 1 2 0 ( − 1 ) r − 1
= 1 2 0 η ( 5 )
Here η ( s ) denotes the Dirichlet eta Function
Using the relation
η ( s ) = ( 1 − 2 s − 1 1 ) ζ ( s )
we have:-
= 1 2 0 ⋅ 1 6 1 5 ζ ( 5 )
= 2 2 2 5 ζ ( 5 )
I would request @Mark Hennings to check if I have missed anything which might cause convergence issues.
Problem Loading...
Note Loading...
Set Loading...
Changing the variables of integration gives I = ∫ 0 1 ∫ 0 1 ( 1 + x y ) 2 ln 4 x y d x d y = = = ∫ 0 1 d x ∫ 0 x ( 1 + z ) 2 ln 4 z x d z ∫ 0 1 ( 1 + z ) 2 ln 4 z ( ∫ z 1 x d x ) d z = − ∫ 0 1 ( 1 + z ) 2 ln 5 z d z − F ( 5 ) ( 1 ) where F ( a ) = ∫ 0 1 ( 1 + x ) 2 x a − 1 d x = 2 1 + 2 1 ( a − 1 ) ψ ( 2 1 a ) − 2 1 ( a − 1 ) ψ ( 2 1 ( a + 1 ) ) for a > 0 . But then F ( 5 ) ( a ) = 6 4 1 ( a − 1 ) ψ ( 5 ) ( 2 1 a ) + 3 2 5 ψ ( 4 ) ( 2 1 a ) − 6 4 1 ( a − 1 ) ψ ( 5 ) ( 2 1 ( a + 1 ) ) − 3 2 5 ψ ( 4 ) ( 2 1 ( a + 1 ) ) so that I = 3 2 5 ψ ( 4 ) ( 1 ) − 3 2 5 ψ ( 4 ) ( 2 1 ) = 2 2 2 5 ζ ( 5 ) making the answer 2 2 5 + 2 + 5 = 2 3 2 .