Who's up to the challenge? 62

Calculus Level 5

0 1 0 1 ( ln x y ) 4 ( 1 + x y ) 2 d x d y = A B ζ ( C ) \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \dfrac { (\ln { } { xy })^4 }{ (1+xy)^{ 2 } }\, dx \; dy } } =\dfrac { A }{ B } \zeta (C)

If the equation above holds true for positive integers A , B A,B and C C , where A A and B B are coprime, find A + B + C A+B+C .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 232.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 3, 2016

Changing the variables of integration gives I = 0 1 0 1 ln 4 x y ( 1 + x y ) 2 d x d y = 0 1 d x 0 x ln 4 z ( 1 + z ) 2 d z x = 0 1 ln 4 z ( 1 + z ) 2 ( z 1 d x x ) d z = 0 1 ln 5 z ( 1 + z ) 2 d z = F ( 5 ) ( 1 ) \begin{array}{rcl} \displaystyle I \; = \; \int_0^1\int_0^1 \frac{\ln^4\,xy}{(1+xy)^2}\,dx\,dy & = & \displaystyle \int_0^1\,dx \int_0^x \frac{ \ln^4\,z}{(1+z)^2}\,\frac{dz}{x} \\ & = & \displaystyle \int_0^1 \frac{\ln^4 z}{(1+z)^2} \left(\int_z^1 \frac{dx}{x}\right)\,dz \; = \; -\int_0^1 \frac{\ln^5\,z}{(1+z)^2}\,dz \\ & = & \displaystyle -F^{(5)}(1) \end{array} where F ( a ) = 0 1 x a 1 ( 1 + x ) 2 d x = 1 2 + 1 2 ( a 1 ) ψ ( 1 2 a ) 1 2 ( a 1 ) ψ ( 1 2 ( a + 1 ) ) F(a) \; = \; \int_0^1 \frac{x^{a-1}}{(1+x)^2}\,dx \; = \; \tfrac12 + \tfrac12(a-1)\psi\big(\tfrac12a\big) - \tfrac12(a-1)\psi\big(\tfrac12(a+1)\big) for a > 0 a > 0 . But then F ( 5 ) ( a ) = 1 64 ( a 1 ) ψ ( 5 ) ( 1 2 a ) + 5 32 ψ ( 4 ) ( 1 2 a ) 1 64 ( a 1 ) ψ ( 5 ) ( 1 2 ( a + 1 ) ) 5 32 ψ ( 4 ) ( 1 2 ( a + 1 ) ) F^{(5)}(a) \; = \; \tfrac1{64}(a-1)\psi^{(5)}\big(\tfrac12a\big) + \tfrac{5}{32}\psi^{(4)}\big(\tfrac12a\big) - \tfrac1{64}(a-1)\psi^{(5)}\big(\tfrac12(a+1)\big) - \tfrac{5}{32}\psi^{(4)}\big(\tfrac12(a+1)\big) so that I = 5 32 ψ ( 4 ) ( 1 ) 5 32 ψ ( 4 ) ( 1 2 ) = 225 2 ζ ( 5 ) I \; = \; \tfrac{5}{32}\psi^{(4)}(1) - \tfrac{5}{32}\psi^{(4)}(\tfrac12) \; = \; \tfrac{225}{2}\zeta(5) making the answer 225 + 2 + 5 = 232 225 + 2 + 5 = \boxed{232} .

We know that 1 ( 1 + x ) 2 = r = 1 x r 1 ( 1 ) r 1 \large \frac{1}{(1+x)^{2}} = \sum_{r=1}^{\infty} x^{r-1}(-1)^{r-1} for 1 < x < 1 -1 < x<1

So rewriting the double integral in a series format we have:-

0 1 0 1 r = 1 r ( 1 ) r 1 x r 1 y r 1 ( ln ( x ) + ln ( y ) ) 4 d x d y \large \int_{0}^{1}\int_{0}^{1}\sum_{r=1}^{\infty}r(-1)^{r-1}x^{r-1}y^{r-1}(\ln(x)+\ln(y))^{4}dxdy

Using Binomial Theorem on ( ln ( x ) + ln ( y ) ) 4 \large (\ln(x)+\ln(y))^{4}

we have:-

0 1 0 1 r = 1 r ( 1 ) r 1 x r 1 y r 1 ( m = 0 4 ( 4 m ) ( ln ( x ) ) 4 m ( ln ( y ) ) m ) d x d y \large \int_{0}^{1}\int_{0}^{1}\sum_{r=1}^{\infty}r(-1)^{r-1}x^{r-1}y^{r-1}(\sum_{m=0}^{4} \binom{4}{m}(\ln(x))^{4-m}(\ln(y))^{m})dxdy

Now let us generalize a result:-

0 1 x k 1 ( ln ( x ) ) n d x \large \int_{0}^{1} x^{k-1}(\ln(x))^{n} dx

Substituting x = e t x=e^{-t} we have

0 ( 1 ) n e t k t n d t \large \int_{0}^{\infty} (-1)^{n}e^{-tk}t^{n} dt

Again substituting k t = z kt=z we have

0 ( 1 ) n e z z n k n + 1 d z \large \int_{0}^{\infty} \frac{(-1)^{n}e^{-z}z^{n}}{k^{n+1}} dz

= ( 1 ) n Γ ( n + 1 ) k n + 1 \large =\frac{(-1)^{n}\Gamma(n+1)}{k^{n+1}}

= ( 1 ) n n ! k n + 1 \large =\frac{(-1)^{n}n!}{k^{n+1}}

So solving the double integrals as iterated integrals by using the above result we have

r = 1 m = 0 4 ( 1 ) r 1 r ( 4 m ) ( 1 ) 4 m ( 1 ) m ( 4 m ) ! m ! r 4 m + 1 r m + 1 \Large \sum_{r=1}^{\infty}\sum_{m=0}^{4} (-1)^{r-1} \cdot r \cdot \binom{4}{m}\frac{(-1)^{4-m}(-1)^{m}(4-m)!m!}{r^{4-m+1}r^{m+1}}

= r = 1 m = 0 4 ( 1 ) r 1 ( 4 m ) ( 4 m ) ! m ! r 5 \Large =\sum_{r=1}^{\infty}\sum_{m=0}^{4} (-1)^{r-1} \binom{4}{m}\frac{(4-m)!m!}{r^{5}}

= r = 1 m = 0 4 ( 1 ) r 1 4 ! r 5 \Large =\sum_{r=1}^{\infty}\sum_{m=0}^{4} (-1)^{r-1}\frac{4!}{r^{5}}

= r = 1 ( 1 ) r 1 ( 5 4 ! ) r 5 \Large =\sum_{r=1}^{\infty}\frac{(-1)^{r-1}(5 \cdot 4!)}{r^{5}}

= r = 1 120 ( 1 ) r 1 r 5 \Large =\sum_{r=1}^{\infty}\frac{120(-1)^{r-1}}{r^{5}}

= 120 η ( 5 ) \large = 120\eta(5)

Here η ( s ) \eta(s) denotes the Dirichlet eta Function

Using the relation

η ( s ) = ( 1 1 2 s 1 ) ζ ( s ) \large \eta(s) = (1-\frac{1}{2^{s-1}})\zeta(s)

we have:-

= 120 15 16 ζ ( 5 ) \large = 120 \cdot \frac{15}{16}\zeta(5)

= 225 2 ζ ( 5 ) \large = \frac{225}{2}\zeta(5)

I would request @Mark Hennings to check if I have missed anything which might cause convergence issues.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...