Who's up to the challenge? 64

Calculus Level 5

0 2 ln ϕ ln ( 2 sinh ( x 2 ) ) d x = π a b \large \int _{ 0 }^{ 2\ln { \phi } }{ \ln { \left( 2\sinh { \left( \dfrac { x }{ 2 } \right) } \right) dx } } =-\dfrac { { \pi }^{ a } }{ b }

Let ϕ \phi denotes the Golden ratio , ϕ = 1 + 5 2 1.618 \phi = \dfrac{1+\sqrt5}2 \approx 1.618 .

If the equation above holds true for integers a a and b b , find a × b a\times b .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ariel Gershon
Jun 7, 2016

0 2 ln ϕ ln ( 2 sinh ( x 2 ) ) d x = 0 2 ln ϕ ln ( e x 1 e x / 2 ) d x \int_0^{2 \ln\phi} \ln\left(2\sinh\left(\dfrac{x}{2}\right)\right) dx = \int_0^{2\ln\phi} \ln\left(\dfrac{e^x-1}{e^{x/2}}\right)dx = 0 2 ln ϕ ln ( e x 1 ) d x 0 2 ln ϕ x 2 d x = \int_0^{2\ln\phi} \ln (e^x-1) dx - \int_0^{2\ln\phi} \dfrac{x}{2}dx

Now let u = e x u = e^x . Then we can rewrite the integral: = 1 ϕ 2 ln ( u 1 ) u d u ln 2 ( ϕ ) =\int_{1}^{\phi^2} \dfrac{\ln(u-1)}{u} du - \ln^2(\phi) Let's rewrite it once again using integration by parts: = ln 2 ( ϕ ) + ln ( u ) ln ( u 1 ) 1 ϕ 2 1 ϕ 2 ln ( u ) u 1 d u = -\ln^2(\phi) + \ln(u)\ln(u-1) \large \rvert_{1}^{\phi^2} \normalsize -\int_{1}^{\phi^2} \dfrac{\ln(u)}{u-1} du Make the substitution y = 1 u y=\dfrac{1}{u} : = ln 2 ( ϕ ) + 1 1 / ϕ 2 ln ( y ) y 2 y d y = \ln^2(\phi) + \int_1^{1/\phi^2} \dfrac{\ln(y)}{y^2-y}dy = ln 2 ( ϕ ) + 1 1 / ϕ 2 ln ( y ) y 1 d y 1 1 / ϕ 2 ln ( y ) y d y = \ln^2(\phi)+ \int_1^{1/\phi^2} \dfrac{\ln(y)}{y-1} dy - \int_1^{1/\phi^2} \dfrac{\ln(y)}{y} dy = ln 2 ( ϕ ) Li 2 ( 1 y ) 1 1 / ϕ 2 ln 2 ( y ) 2 1 1 / ϕ 2 = \ln^2(\phi) - \text{Li}_2(1-y) \large \rvert_{1}^{1/\phi^2} \normalsize -\dfrac{\ln^2(y)}{2} \large \rvert_{1}^{1/\phi^2} = ln 2 ( ϕ ) Li 2 ( 1 ϕ ) = -\ln^2(\phi) - \text{Li}_2\left(\dfrac{1}{\phi}\right)

To find the value of this expression, I am going to use three lemmas involving the dilogarithm:

( 1 ) Li 2 ( z 2 ) = 2 Li 2 ( z ) + 2 Li 2 ( z ) ( 2 ) Li 2 ( z ) + Li 2 ( 1 z ) = π 2 6 ln ( z ) ln ( 1 z ) ( 3 ) Li 2 ( z ) + Li 2 ( z z 1 ) = 1 2 ln 2 ( 1 z ) \begin{array}{ll} (1) & \text{Li}_2(z^2) = 2\text{Li}_2(z) + 2\text{Li}_2(-z)\\ (2) & \text{Li}_2(z)+\text{Li}_2(1-z) = \dfrac{\pi^2}{6} -\ln(z)\ln(1-z)\\ (3) & \text{Li}_2(z) + \text{Li}_2\left(\dfrac{z}{z-1}\right) = -\dfrac{1}{2} \ln^2(1-z)\end{array}

These can all be proved easily by differentiating, so I won't waste time with that here.

If we substitute z = 1 ϕ z = \dfrac{1}{\phi } into the first equation and z = 1 ϕ 2 z= \dfrac{1}{\phi^2} into the others, we get the following system of equations:

( 1 ) Li 2 ( 1 ϕ 2 ) = 2 Li 2 ( 1 ϕ ) + 2 Li 2 ( 1 ϕ ) ( 2 ) Li 2 ( 1 ϕ 2 ) + Li 2 ( 1 ϕ ) = π 2 6 2 ln 2 ( ϕ ) ( 3 ) Li 2 ( 1 ϕ 2 ) + Li 2 ( 1 ϕ ) = 1 2 ln 2 ( ϕ ) \begin{array}{ll} (1) & \text{Li}_2\left(\dfrac{1}{\phi^2}\right) = 2\text{Li}_2\left(\dfrac{1}{\phi}\right)+ 2\text{Li}_2\left(\dfrac{-1}{\phi}\right)\\ (2) & \text{Li}_2\left(\dfrac{1}{\phi^2}\right) + \text{Li}_2\left(\dfrac{1}{\phi}\right)= \dfrac{\pi^2}{6} -2\ln^2(\phi)\\ (3) & \text{Li}_2\left(\dfrac{1}{\phi^2}\right) + \text{Li}_2\left(\dfrac{-1}{\phi}\right) = -\dfrac{1}{2}\ln^2(\phi) \end{array}

From this system we get Li 2 ( 1 ϕ ) = π 2 10 ln 2 ( ϕ ) \text{Li}_2\left(\dfrac{1}{\phi}\right) = \dfrac{\pi^2}{10} - \ln^2(\phi) . Therefore the value of the integral is π 2 10 \boxed{-\dfrac{\pi^2}{10}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...