n → ∞ lim e n / 2 n n ( 1 n ) ( 2 n ) ⋯ ( n n )
The limit above can be expressed as B π A e , where A and B are positive integers with B square-free.
Find A + B .
Notation : ( N M ) denotes the binomial coefficient , ( N M ) = N ! ( M − N ) ! M ! .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let P n = k = 1 ∏ n ( k n ) .
P n = k = 1 ∏ n − 1 ( k n ) = k = 1 ∏ n − 1 k ! ( n − k ) ! n ! = ∏ k = 1 n k 2 ( n − k ) ( n ! ) n − 1 = ( n ! ) 2 n ( n ! ) n − 1 k = 1 ∏ n k 2 k = ( n ! ) n + 1 1 ( k = 1 ∏ n k k ) 2
Now let A represent the Glashier-Kinkelin constant. Then we can write an asymptotic expression for P n :
P n ≈ ( n ! ) n + 1 1 ( A n n 2 / 2 + n / 2 + 1 / 1 2 e − n 2 / 4 ) 2 ≈ ( n n 2 π n e n ) n + 1 A 2 n n 2 + n + 1 / 6 e − n 2 / 2 P n ≈ ( 2 π ) n / 2 + 1 / 2 n n / 2 + 1 / 3 A 2 e n + n 2 / 2 n P n ≈ 2 π n e 1 + n / 2
Therefore,
n → ∞ lim e n / 2 n n P n = n → ∞ lim e n / 2 n 2 π n e 1 + n / 2 = 2 π e
Problem Loading...
Note Loading...
Set Loading...
Since Stirling's approximation tells us that ln k ! = ( k + 2 1 ) ln k − k + ln 2 π + O ( k − 1 ) k → ∞ we can show that 2 k = 0 ∑ n ln k ! = ( n + 2 3 ) ln n ! − 2 1 n ( n + 1 ) + n ln 2 π + O ( ln n ) n → ∞ so that ln ( k = 0 ∏ n ( k n ) ) = = = ( n + 1 ) ln n ! − 2 k = 0 ∑ n ln k ! − 2 1 ln n ! + 2 1 n ( n + 1 ) − n ln 2 π + O ( ln n ) − 2 1 n ln n + 2 1 n ( n + 2 ) − n ln 2 π + O ( ln n ) n → ∞ But then ln ( n k = 0 ∏ n ( k n ) ) = − 2 1 ln n + 2 1 ( n + 2 ) − ln 2 π + O ( n ln n ) n → ∞ and hence ln ⎝ ⎛ e 2 1 n n n ∏ k = 0 n ( k n ) ⎠ ⎞ = 1 − ln 2 π + O ( n ln n ) n → ∞ Thus the desired limit is 2 π e , making the answer 1 + 2 = 3 .