Who's up to the challenge? 68

Calculus Level 5

lim n n ( n 1 ) ( n 2 ) ( n n ) n e n / 2 \large \lim _{ n\to\infty }{ \dfrac { \sqrt { n } \sqrt [ n ]{ \binom{n}{1}\binom{n}{2}\cdots \binom{n}{n} } }{ { e }^{ n/2 } } }

The limit above can be expressed as A e B π \dfrac { Ae }{ \sqrt { B\pi } } , where A A and B B are positive integers with B B square-free.

Find A + B A+B .

Notation : ( M N ) \dbinom MN denotes the binomial coefficient , ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac{M!}{N!(M-N)!} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 4, 2016

Since Stirling's approximation tells us that ln k ! = ( k + 1 2 ) ln k k + ln 2 π + O ( k 1 ) k \ln k! \; = \; (k+\tfrac12)\ln k - k + \ln\sqrt{2\pi} + O(k^{-1}) \qquad \qquad k \to \infty we can show that 2 k = 0 n ln k ! = ( n + 3 2 ) ln n ! 1 2 n ( n + 1 ) + n ln 2 π + O ( ln n ) n 2\sum_{k=0}^n \ln k! \; = \; (n+\tfrac32)\ln n! - \tfrac12n(n+1) + n\ln\sqrt{2\pi} + O(\ln n) \qquad \qquad n \to \infty so that ln ( k = 0 n ( n k ) ) = ( n + 1 ) ln n ! 2 k = 0 n ln k ! = 1 2 ln n ! + 1 2 n ( n + 1 ) n ln 2 π + O ( ln n ) = 1 2 n ln n + 1 2 n ( n + 2 ) n ln 2 π + O ( ln n ) n \begin{array}{rcl} \displaystyle \ln\left(\prod_{k=0}^n \binom{n}{k}\right) & = & \displaystyle (n+1) \ln n! - 2\sum_{k=0}^n \ln k! \\ & = & \displaystyle -\tfrac12 \ln n! + \frac12n(n+1) - n\ln \sqrt{2\pi} + O(\ln n) \\ & = & \displaystyle -\tfrac12 n \ln n + \tfrac12n(n+2) - n\ln\sqrt{2\pi} + O(\ln n) \qquad \qquad n \to \infty \end{array} But then ln ( k = 0 n ( n k ) n ) = 1 2 ln n + 1 2 ( n + 2 ) ln 2 π + O ( ln n n ) n \ln\left(\sqrt[n]{\prod_{k=0}^n \binom{n}{k}}\right) \; = \; -\tfrac12\ln n + \tfrac12(n+2) - \ln\sqrt{2\pi} + O\big(\tfrac{\ln n}{n}\big) \qquad \qquad n \to \infty and hence ln ( n k = 0 n ( n k ) n e 1 2 n ) = 1 ln 2 π + O ( ln n n ) n \ln\left(\frac{\sqrt{n} \sqrt[n]{\prod_{k=0}^n \binom{n}{k}}}{e^{\frac12n}}\right) \; = \;1 - \ln\sqrt{2\pi} + O\big(\tfrac{\ln n}{n}\big) \qquad \qquad n \to \infty Thus the desired limit is e 2 π \frac{e}{\sqrt{2\pi}} , making the answer 1 + 2 = 3 1+2=\boxed{3} .

Ariel Gershon
Jun 3, 2016

Let P n = k = 1 n ( n k ) P_n = \displaystyle\prod_{k=1}^{n} \binom{n}{k} .

P n = k = 1 n 1 ( n k ) = k = 1 n 1 n ! k ! ( n k ) ! = ( n ! ) n 1 k = 1 n k 2 ( n k ) = ( n ! ) n 1 ( n ! ) 2 n k = 1 n k 2 k = 1 ( n ! ) n + 1 ( k = 1 n k k ) 2 P_n = \prod_{k=1}^{n-1} \binom{n}{k} = \prod_{k=1}^{n-1} \frac{n!}{k! (n-k)!} = \dfrac{(n!)^{n-1}}{\prod_{k=1}^{n} k^{2(n-k)}} = \dfrac{(n!)^{n-1}}{(n!)^{2n}} \prod_{k=1}^{n} k^{2k} = \dfrac{1}{(n!)^{n+1}} \left(\prod_{k=1}^{n} k^{k}\right)^2

Now let A A represent the Glashier-Kinkelin constant. Then we can write an asymptotic expression for P n P_n :

P n 1 ( n ! ) n + 1 ( A n n 2 / 2 + n / 2 + 1 / 12 e n 2 / 4 ) 2 ( e n n n 2 π n ) n + 1 A 2 n n 2 + n + 1 / 6 e n 2 / 2 P_n \approx \dfrac{1}{(n!)^{n+1}} \left(A n^{n^2/2+n/2+1/12}e^{-n^2/4}\right)^2 \approx \left(\dfrac{e^n} {n^n\sqrt{2\pi n}}\right)^{n+1} A^2 n^{n^2+n+1/6}e^{-n^2/2} P n A 2 e n + n 2 / 2 ( 2 π ) n / 2 + 1 / 2 n n / 2 + 1 / 3 P_n \approx \dfrac{A^2 e^{n+n^2/2}}{(2\pi)^{n/2+1/2} n^{n/2+1/3}} P n n e 1 + n / 2 2 π n \sqrt[n]{P_n} \approx \dfrac{e^{1+n/2}}{\sqrt{2\pi n}}

Therefore,

lim n n P n n e n / 2 = lim n n e n / 2 e 1 + n / 2 2 π n = e 2 π \lim_{n\to\infty} \dfrac{\sqrt{n}\sqrt[n]{P_n}}{e^{n/2}} = \lim_{n\to\infty} \dfrac{\sqrt{n}}{e^{n/2}} \dfrac{e^{1+n/2}}{\sqrt{2\pi n}} = \boxed{\dfrac{e}{\sqrt{2\pi}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...