n = 1 ∑ ∞ n 5 H n = B π A − E ( ζ ( D ) ) C
If the equation above holds true for positive integers A , B , C , D and E , find A + B + C + D + E .
Notations :
H n denotes the n th harmonic number , H n = 1 + 2 1 + 3 1 + ⋯ + n 1 .
ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thanks so much for taking the time to write not just 1 ,but 3 solutions! :)
This is an interesting evaluation, For this let us consider some sums,
Lemma 1 :
α ( p ) = n , m = 1 ∑ ∞ n p − 1 m ( n − m ) 1 = k = 1 ∑ ∞ k p H k − 2 ζ ( p + 1 )
Proof :
n , m = 1 ∑ ∞ n p − 1 m ( n − m ) 1 = n , m = 1 ∑ ∞ n p 1 m ( n − m ) n
α ( p ) = n = 1 ∑ ∞ n p 1 m = 1 ∑ ∞ ( m 1 + n − m 1 )
α ( p ) = n = 1 ∑ ∞ n p 1 ( H n − n 2 )
α ( p ) = k = 1 ∑ ∞ k p H k − 2 ζ ( p + 1 )
Lemma 2:
Let m be an arbitrary positive integer such that ,
β ( p , x ) = n = 1 = m ∑ ∞ n p ( n − x ) 1 = x p − 1 1 n ≥ 1 ∑ n ( n − x ) 1 − k = 1 ∑ p − 1 x k ζ ( p − k + 1 ) − m p − k + 1 1
Proof :
β ( p , x ) = − x 1 n = 1 ∑ ∞ n p ( n − x ) n − x − n = x 1 ( β ( p − 1 , x ) − n = 1 ∑ ∞ n p 1 )
We have n = 1 ∑ ∞ n p 1 = ζ ( p ) − m p 1 so the above equation turns,
β ( p , x ) = x 1 ( β ( p − 1 , x ) − ζ ( p ) + m p 1 )
With this procedure repeated ( p − 2 ) times we get our result,
β ( p , x ) = n = 1 = m ∑ ∞ n p ( n − x ) 1 = x p − 1 1 n ≥ 1 ∑ n ( n − x ) 1 − k = 1 ∑ p − 1 x k ζ ( p − k + 1 ) − m p − k + 1 1
Now Set p = p − 1 & x = m we get,
n = 1 ∑ ∞ n p − 1 ( n − m ) 1 = m p − 1 1 n = 1 ∑ ∞ n − m m − k = 1 ∑ p − 2 m k ζ ( p − k + 1 ) − m p − k + 1 1
Dividing both sides by m we get ,
α ( p ) = − k = 1 ∑ p − 2 ( ζ ( k + 1 ) ζ ( p − k ) − ζ ( p + 1 ) ) − α ( p )
Solving and substituting for α ( p ) we derive ,
n = 1 ∑ ∞ n p H n = 2 1 ( p + 2 ) ζ ( p + 1 ) − 2 1 k = 1 ∑ p − 2 ζ ( k + 1 ) ζ ( p − k )
Hence We are to evaluate α ( 5 ) = n = 1 ∑ ∞ n 5 H n = 5 4 0 π 6 − 2 ζ 2 ( 3 ) , which makes the answer 5 4 0 + 6 + 2 + 3 + 2 = 5 5 3
In your Lemma 1, how did you get ∑ m = 1 ∞ ( m 1 + n − m 1 ) = H n − n 2 ? Wouldn't n = m at some point, causing the denominator of the second fraction to be zero?
Nice way to derive euler summation formula! Would you like to join a private group on slack where we discuss problems, theorems, etc? If yes message me on slack.
Log in to reply
Thanks! And ya I txtd u on slack.
Hey aditya can you add me also there (puppy eyes)
Problem Loading...
Note Loading...
Set Loading...
Method 1
Note that,
∫ 0 1 x n − 1 d x = n 1
Differentiating w.r.t. to n , ( p − 1 ) times, we get,
n p 1 = ( p − 1 ) ! ( − 1 ) p − 1 ∫ 0 1 x n − 1 [ ln ( x ) ] p − 1 d x
⟹ n = 1 ∑ ∞ n p H n = ( p − 1 ) ! ( − 1 ) p − 1 ∫ 0 1 [ ln ( x ) ] p − 1 n = 1 ∑ ∞ H n x n − 1 d x
Since n = 1 ∑ ∞ H n x n = − 1 − x ln ( 1 − x ) , we get,
S = ( p − 1 ) ! ( − 1 ) p ∫ 0 1 x ( 1 − x ) [ ln ( x ) ] p − 1 ⋅ ln ( 1 − x ) d x
Recall the Beta Function B ( a , b ) = ∫ 0 1 x a − 1 ( 1 − x ) b − 1 d x = Γ ( a + b ) Γ ( a ) Γ ( b )
⟹ S = ( p − 1 ) ! ( − 1 ) p a → 0 + lim b → 0 + lim ∂ a p − 1 ∂ p − 1 ( ∂ b ∂ B ( a , b ) )
= ( 1 + 2 p ) ζ ( p + 1 ) − 2 1 k = 1 ∑ p − 2 ζ ( k + 1 ) ζ ( p − k )
Method 2
Proof : I have proved it here
Now,
n = 1 ∑ ∞ n p H n = n = 1 ∑ ∞ ∫ 0 1 n p 1 ( 1 − x 1 − x n ) d x
= ∫ 0 1 1 − x ζ ( p ) − L i p ( x ) d x
r = 1 ∑ ∞ ∫ 0 1 ( x r ζ ( p ) − x r L i p ( x ) ) d x
Let S = n = 1 ∑ ∞ n p H n
Using the proposition,
S = r = 1 ∑ ∞ [ r ζ ( p ) − ( − 1 ) p + 1 ( r + 1 ) p H r + 1 + k = 2 ∑ p ( ( − 1 ) p + k ( n + 1 ) p − k + 1 ζ ( k ) ) ]
= ( − 1 ) p r = 1 ∑ ∞ r p H r + ( − 1 ) p r = 0 ∑ ∞ k = 2 ∑ p − 1 ( r + 1 ) p − k + 1 ( − 1 ) k ζ ( k )
If p is odd, we get,
2 S = k = 1 ∑ p − 2 ( − 1 ) k − 1 ζ ( k + 1 ) ζ ( p − k )
⟹ S = 2 1 k = 1 ∑ p − 2 ( − 1 ) k − 1 ζ ( k + 1 ) ζ ( p − k )
Method 3
Let p be odd, p ≥ 3 ,
S = n = 1 ∑ ∞ n p H n
= ∫ 0 1 1 − x ζ ( p ) − L i p ( x ) d x
Using I.B.P., we have,
S = − [ ( ζ ( p ) − L i p ( x ) ) ln ( 1 − x ) ] 0 1 − ∫ 0 1 x lo g ( 1 − x ) L i p − 1 ( x ) d x
= − ∫ 0 1 x lo g ( 1 − x ) L i p − 1 ( x ) d x
Again, using I.B.P., we have,
S = [ L i 2 ( x ) Li p − 1 ( x ) ] 0 1 − ∫ 0 1 x L i 2 ( x ) L i p − 2 ( x ) d x
= ζ ( 2 ) ζ ( q − 1 ) − ∫ 0 1 x L i 2 ( x ) Li p − 2 ( x ) d x
Similarly,applying I.B.P. p times, we get,
⟹ S = k = 1 ∑ p − 2 ( − 1 ) k − 1 ζ ( k + 1 ) ζ ( p − k ) + ∫ 0 1 x lo g ( 1 − x ) L i p − 1 ( x ) d x
= k = 1 ∑ p − 2 ( − 1 ) k − 1 ζ ( k + 1 ) ζ ( p − k ) − ∫ 0 1 1 − x ζ ( p ) − L i p ( x ) d x
⟹ S = 2 1 k = 1 ∑ p − 2 ( − 1 ) k − 1 ζ ( k + 1 ) ζ ( p − k )
Thus,
n = 1 ∑ ∞ n 5 H n = 5 4 0 π 6 − 2 ζ 2 ( 3 )
∴ Ans. = 5 5 3