Have You Heard Of Euler's Sum?

Calculus Level 5

n = 1 H n n 5 = π A B ( ζ ( D ) ) C E \large \sum_{n=1}^\infty \dfrac{H_n}{n^5} = \dfrac{\pi^A}{B} - \dfrac{(\zeta (D))^C}{E}

If the equation above holds true for positive integers A , B , C , D A,B,C,D and E E , find A + B + C + D + E A+B+C+D+E .

Notations :

  • H n H_n denotes the n th n^\text{th} harmonic number , H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1n .

  • ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 553.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ishan Singh
Jun 5, 2016

Method 1 \underline{\text{Method 1}}

Note that,

0 1 x n 1 d x = 1 n \displaystyle \int_{0}^{1} x^{n-1} \mathrm{d}x = \dfrac{1}{n}

Differentiating w.r.t. to n n , ( p 1 ) (p-1) times, we get,

1 n p = ( 1 ) p 1 ( p 1 ) ! 0 1 x n 1 [ ln ( x ) ] p 1 d x \displaystyle \dfrac{1}{n^{p}} = \dfrac{(-1)^{p-1}}{(p-1)!} \int_{0}^{1} x^{n-1} [\ln(x)]^{p-1} \mathrm{d}x

n = 1 H n n p = ( 1 ) p 1 ( p 1 ) ! 0 1 [ ln ( x ) ] p 1 n = 1 H n x n 1 d x \displaystyle \implies \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^{p}} = \dfrac{(-1)^{p-1}}{(p-1)!} \int_{0}^{1} [\ln(x)]^{p-1} \sum_{n=1}^{\infty} H_{n} x^{n-1} \mathrm{d}x

Since n = 1 H n x n = ln ( 1 x ) 1 x \displaystyle \sum_{n=1}^{\infty} H_{n} x^{n} = -\dfrac{\ln(1-x)}{1-x} , we get,

S = ( 1 ) p ( p 1 ) ! 0 1 [ ln ( x ) ] p 1 ln ( 1 x ) x ( 1 x ) d x \displaystyle \text{S} = \dfrac{(-1)^{p}}{(p-1)!} \int_{0}^{1}\dfrac{[\ln(x)]^{p-1} \cdot \ln(1-x) }{x(1-x)} \mathrm{d}x

Recall the Beta Function B ( a , b ) = 0 1 x a 1 ( 1 x ) b 1 d x = Γ ( a ) Γ ( b ) Γ ( a + b ) \displaystyle \operatorname{B}(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} \mathrm{d}x = \dfrac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}

S = ( 1 ) p ( p 1 ) ! lim a 0 + lim b 0 + p 1 a p 1 ( b B ( a , b ) ) \displaystyle \implies \text{S} = \dfrac{(-1)^{p}}{(p-1)!} \lim_{a \to 0^+} \lim_{b \to 0^+} \dfrac{{\partial}^{p-1}}{\partial a^{p-1}} \left( \dfrac{\partial}{\partial b} \operatorname{B}(a,b) \right)

= ( 1 + p 2 ) ζ ( p + 1 ) 1 2 k = 1 p 2 ζ ( k + 1 ) ζ ( p k ) \displaystyle = \left(1+\dfrac{p}{2} \right)\zeta(p+1)-\dfrac{1}{2}\sum_{k=1}^{p-2}\zeta(k+1)\zeta(p-k)


Method 2 \underline{\text{Method 2}}

Proposition : 0 1 x n Li s ( x ) d x = ( 1 ) s + 1 H n + 1 ( n + 1 ) s + r = 2 s [ ( 1 ) s + r ζ ( r ) ( n + 1 ) s r + 1 ] ; s 2 ; s , n Z + \displaystyle \int_{0}^{1} x^{n} \operatorname{Li}_{s}(x) \mathrm{d}x = (-1)^{s+1} \dfrac{H_{n+1}}{(n+1)^{s}} + \sum_{r=2}^{s} \left[(-1)^{s+r} \dfrac{\zeta(r)}{(n+1)^{s-r+1}} \right] \ ; \ s \geq 2 \ ; \ s,n \in \mathbb{Z^{+}}

Proof : I have proved it here

Now,

n = 1 H n n p = n = 1 0 1 1 n p ( 1 x n 1 x ) d x \displaystyle \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^{p}} = \sum_{n=1}^{\infty} \int_{0}^{1} \dfrac{1}{n^p} \left(\dfrac{1-x^n}{1-x}\right) \mathrm{d}x

= 0 1 ζ ( p ) Li p ( x ) 1 x d x \displaystyle = \int_{0}^{1} \dfrac{\zeta(p) - \operatorname{Li}_{p}(x)}{1-x} \mathrm{d}x

r = 1 0 1 ( x r ζ ( p ) x r Li p ( x ) ) d x \displaystyle \sum_{r=1}^{\infty} \int_{0}^{1} (x^r \zeta(p) - x^r \operatorname{Li}_{p}(x)) \mathrm{d}x

Let S = n = 1 H n n p \displaystyle \text{S} = \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^{p}}

Using the proposition,

S = r = 1 [ ζ ( p ) r ( 1 ) p + 1 H r + 1 ( r + 1 ) p + k = 2 p ( ( 1 ) p + k ζ ( k ) ( n + 1 ) p k + 1 ) ] \displaystyle \text{S} = \sum_{r=1}^{\infty} \left[ \dfrac{\zeta(p)}{r} - (-1)^{p+1} \dfrac{H_{r+1}}{(r+1)^{p}} + \sum_{k=2}^{p} \left((-1)^{p+k} \dfrac{\zeta(k)}{(n+1)^{p-k+1}}\right) \right]

= ( 1 ) p r = 1 H r r p + ( 1 ) p r = 0 k = 2 p 1 ( 1 ) k ζ ( k ) ( r + 1 ) p k + 1 \displaystyle = (-1)^p \sum_{r=1}^{\infty}\dfrac{H_{r}}{r^p} + (-1)^{p}\sum_{r=0}^{\infty} \sum_{k=2}^{p-1} \dfrac{(-1)^{k} \zeta(k)}{(r+1)^{p-k+1}}

If p p is odd, we get,

2 S = k = 1 p 2 ( 1 ) k 1 ζ ( k + 1 ) ζ ( p k ) \displaystyle 2\text{S} = \sum_{k=1}^{p-2} (-1)^{k-1} \zeta(k+1) \zeta(p-k)

S = 1 2 k = 1 p 2 ( 1 ) k 1 ζ ( k + 1 ) ζ ( p k ) \displaystyle \implies \text{S} = \dfrac{1}{2} \sum_{k=1}^{p-2} (-1)^{k-1} \zeta(k+1) \zeta(p-k)


Method 3 \underline{\text{Method 3}}

Let p p be odd, p 3 p \geq 3 ,

S = n = 1 H n n p \displaystyle \text{S} = \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^{p}}

= 0 1 ζ ( p ) Li p ( x ) 1 x d x \displaystyle = \int_{0}^{1} \dfrac{\zeta(p) - \operatorname{Li}_{p}(x)}{1-x} \mathrm{d}x

Using I.B.P., we have,

S = [ ( ζ ( p ) Li p ( x ) ) ln ( 1 x ) ] 0 1 0 1 log ( 1 x ) Li p 1 ( x ) x d x \displaystyle \text{S} = - \left[\Big(\zeta(p) - \operatorname{Li}_{p}(x) \Big) \ln(1-x)\right]_{0}^{1} - \int_{0}^{1} \dfrac{\log(1-x) \operatorname{Li}_{p-1}(x)}{x} \ \mathrm{d}x

= 0 1 log ( 1 x ) Li p 1 ( x ) x d x \displaystyle = - \int_{0}^{1} \dfrac{\log(1-x) \operatorname{Li}_{p-1}(x)}{x} \mathrm{d}x

Again, using I.B.P., we have,

S = [ Li 2 ( x ) Li p 1 ( x ) ] 0 1 0 1 Li 2 ( x ) Li p 2 ( x ) x d x \displaystyle \text{S} = \left[\operatorname{Li}_{2}(x) \text{Li}_{p-1}(x) \right]_{0}^{1} - \int_{0}^{1} \dfrac{\operatorname{Li}_{2}(x) \operatorname{Li}_{p-2}(x)}{x} \mathrm{d}x

= ζ ( 2 ) ζ ( q 1 ) 0 1 Li 2 ( x ) Li p 2 ( x ) x d x \displaystyle = \zeta(2) \zeta(q-1) - \int_{0}^{1} \dfrac{\operatorname{Li}_{2}(x) \text{Li}_{p-2}(x)}{x} \ \mathrm{d}x

Similarly,applying I.B.P. p p times, we get,

S = k = 1 p 2 ( 1 ) k 1 ζ ( k + 1 ) ζ ( p k ) + 0 1 log ( 1 x ) Li p 1 ( x ) x d x \displaystyle \implies \text{S} = \sum_{k=1}^{p-2} (-1)^{k-1} \zeta(k+1) \zeta(p-k) + \int_{0}^{1} \dfrac{\log(1-x) \operatorname{Li}_{p-1}(x)}{x} \ \mathrm{d}x

= k = 1 p 2 ( 1 ) k 1 ζ ( k + 1 ) ζ ( p k ) 0 1 ζ ( p ) Li p ( x ) 1 x d x \displaystyle = \sum_{k=1}^{p-2} (-1)^{k-1} \zeta(k+1) \zeta(p-k) - \int_{0}^{1} \dfrac{\zeta(p) - \operatorname{Li}_{p}(x)}{1-x} \mathrm{d}x

S = 1 2 k = 1 p 2 ( 1 ) k 1 ζ ( k + 1 ) ζ ( p k ) \displaystyle \implies \text{S} = \dfrac{1}{2}\sum_{k=1}^{p-2} (-1)^{k-1} \zeta(k+1) \zeta(p-k)


Thus,

n = 1 H n n 5 = π 6 540 ζ 2 ( 3 ) 2 \displaystyle \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^5} = \dfrac{\pi^{6}}{540} - \dfrac{\zeta^2(3)}{2}

Ans. = 553 \therefore \text{Ans.} = \boxed{553}

Thanks so much for taking the time to write not just 1 ,but 3 solutions! :)

Hamza A - 5 years ago

This is an interesting evaluation, For this let us consider some sums,

Lemma 1 : \text{Lemma 1 :}

α ( p ) = n , m = 1 1 n p 1 m ( n m ) = k = 1 H k k p 2 ζ ( p + 1 ) \displaystyle \alpha(p) = \sum_{n,m=1}^{\infty} \frac{1}{n^{p-1}m(n-m)} = \sum_{k=1}^{\infty} \frac{H_k}{k^p} - 2\zeta(p+1)

Proof : \text{Proof :}

n , m = 1 1 n p 1 m ( n m ) = n , m = 1 1 n p n m ( n m ) \displaystyle \sum_{n,m=1}^{\infty} \frac{1}{n^{p-1}m(n-m)} = \sum_{n,m=1}^{\infty} \frac{1}{n^p}\frac{n}{m(n-m)}

α ( p ) = n = 1 1 n p m = 1 ( 1 m + 1 n m ) \displaystyle \alpha(p) = \sum_{n=1}^{\infty} \frac{1}{n^p} \sum_{m=1}^{\infty}(\frac{1}{m}+\frac{1}{n-m})

α ( p ) = n = 1 1 n p ( H n 2 n ) \displaystyle \alpha(p) = \sum_{n=1}^{\infty} \frac{1}{n^p}(H_n-\frac{2}{n})

α ( p ) = k = 1 H k k p 2 ζ ( p + 1 ) \displaystyle \alpha(p)= \color{#D61F06}{\sum_{k=1}^{\infty} \frac{H_k}{k^p}-2\zeta(p+1)}

Lemma 2: \text{Lemma 2:}

Let m m be an arbitrary positive integer such that ,

β ( p , x ) = n = 1 m 1 n p ( n x ) = 1 x p 1 n 1 1 n ( n x ) k = 1 p 1 ζ ( p k + 1 ) 1 m p k + 1 x k \displaystyle \beta(p,x) = \sum_{n=1\ne m}^{\infty} \frac{1}{n^p(n-x)} = \frac{1}{x^{p-1}}\sum_{n\ge 1} \frac{1}{n(n-x)} - \sum_{k=1}^{p-1} \frac{\zeta(p-k+1) - \frac{1}{m^{p-k+1}}}{x^k}

Proof : \text{Proof :}

β ( p , x ) = 1 x n = 1 n x n n p ( n x ) = 1 x ( β ( p 1 , x ) n = 1 1 n p ) \displaystyle \beta(p,x)= -\frac{1}{x}\sum_{n=1}^{\infty} \frac{n-x-n}{n^p(n-x)} = \frac{1}{x}(\beta(p-1,x)-\sum_{n=1}^{\infty} \frac{1}{n^p})

We have n = 1 1 n p = ζ ( p ) 1 m p \displaystyle \sum_{n=1}^{\infty} \frac{1}{n^p} = \zeta(p)-\frac{1}{m^p} so the above equation turns,

β ( p , x ) = 1 x ( β ( p 1 , x ) ζ ( p ) + 1 m p ) \displaystyle \beta(p,x) = \frac{1}{x}(\beta(p-1,x)-\zeta(p)+\frac{1}{m^p})

With this procedure repeated ( p 2 ) (p-2) times we get our result,

β ( p , x ) = n = 1 m 1 n p ( n x ) = 1 x p 1 n 1 1 n ( n x ) k = 1 p 1 ζ ( p k + 1 ) 1 m p k + 1 x k \displaystyle \beta(p,x) = \color{#3D99F6}{\sum_{n=1\ne m}^{\infty} \frac{1}{n^p(n-x)} = \frac{1}{x^{p-1}}\sum_{n\ge 1} \frac{1}{n(n-x)} - \sum_{k=1}^{p-1} \frac{\zeta(p-k+1) - \frac{1}{m^{p-k+1}}}{x^k}}

Now Set p = p 1 p=p-1 & x = m x=m we get,

n = 1 1 n p 1 ( n m ) = 1 m p 1 n = 1 m n m k = 1 p 2 ζ ( p k + 1 ) 1 m p k + 1 m k \displaystyle \sum_{n=1}^{\infty} \frac{1}{n^{p-1}(n-m)} = \frac{1}{m^{p-1}}\sum_{n=1}^{\infty}\frac{m}{n-m} - \sum_{k=1}^{p-2} \frac{\zeta(p-k+1) - \frac{1}{m^{p-k+1}}}{m^k}

Dividing both sides by m m we get ,

α ( p ) = k = 1 p 2 ( ζ ( k + 1 ) ζ ( p k ) ζ ( p + 1 ) ) α ( p ) \displaystyle \alpha(p)= -\sum_{k=1}^{p-2}(\zeta(k+1)\zeta(p-k) - \zeta(p+1)) - \alpha(p)

Solving and substituting for α ( p ) \displaystyle \alpha(p) we derive ,

n = 1 H n n p = 1 2 ( p + 2 ) ζ ( p + 1 ) 1 2 k = 1 p 2 ζ ( k + 1 ) ζ ( p k ) \displaystyle \color{#20A900}{ \sum_{n=1}^{\infty} \frac{H_n}{n^p} = \frac{1}{2}(p+2)\zeta(p+1)-\frac{1}{2}\sum_{k=1}^{p-2}\zeta(k+1)\zeta(p-k)}

Hence We are to evaluate α ( 5 ) = n = 1 H n n 5 = π 6 540 ζ 2 ( 3 ) 2 \displaystyle \alpha(5) = \sum_{n=1}^{\infty}\frac{H_n}{n^5} = \frac{\pi^6}{540}-\frac{\zeta^2(3)}{2} , which makes the answer 540 + 6 + 2 + 3 + 2 = 553 \boxed{540+6+2+3+2=553}

In your Lemma 1, how did you get m = 1 ( 1 m + 1 n m ) = H n 2 n \sum_{m=1}^{\infty} \left(\frac{1}{m} + \frac{1}{n-m} \right) = H_n - \frac{2}{n} ? Wouldn't n = m n=m at some point, causing the denominator of the second fraction to be zero?

Ariel Gershon - 5 years ago

Nice way to derive euler summation formula! Would you like to join a private group on slack where we discuss problems, theorems, etc? If yes message me on slack.

Aditya Kumar - 5 years ago

Log in to reply

Thanks! And ya I txtd u on slack.

Log in to reply

I didn't get your text. Text 3.1415han

Aditya Kumar - 5 years ago

Hey aditya can you add me also there (puppy eyes)

Samarth Agarwal - 5 years ago

Log in to reply

Ask pi han.

Aditya Kumar - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...