Who's up to the challenge? 72

Calculus Level 5

0 1 x 3 1 x 7 d x = A Γ ( B C ) π D Γ ( E F ) \large \int _{ 0 }^{ 1 }{ { x }^{ 3 }\sqrt { 1-{ x }^{ 7 } } dx } =\frac { A\Gamma \left( \frac { B }{ C } \right) \sqrt { \pi } }{ D\Gamma \left( \frac { E }{ F } \right) }

If the equation above holds true for positive integers A A , B B , C C , D D , E E and F F with gcd ( A , D ) \text{gcd}(A,D) = gcd ( B , C ) =\text{gcd}(B,C) = gcd ( E , F ) = 1 =\text{gcd}(E,F)=1 and B C , E F < 1 \dfrac{B}{C},\dfrac{E}{F}<1 , find A + B + C + D + E + F A+B+C+D+E+F .


The answer is 55.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 11, 2016

I = 0 1 x 3 1 x 7 d x Let u 2 = x 7 x = u 2 7 d x = 2 7 u 5 7 d u = 2 7 0 1 u 6 7 u 5 7 ( 1 u 2 ) 1 2 d u = 2 7 0 1 u 1 7 ( 1 u 2 ) 1 2 d u = 1 7 B ( 4 7 , 3 2 ) = Γ ( 4 7 ) Γ ( 3 2 ) 7 Γ ( 29 14 ) = Γ ( 4 7 ) 1 2 π 7 15 14 1 14 Γ ( 1 14 ) = 14 Γ ( 4 7 ) π 15 Γ ( 1 14 ) \begin{aligned} I & = \int_0^1 x^3\sqrt{1-\color{#3D99F6}{x^7}} dx \quad \quad \small \color{#3D99F6}{\text{Let }u^2 = x^7 \implies x = u^\frac27 \implies dx = \frac27 u^{-\frac57} du} \\ & = \frac27 \int_0^1 u^\frac67 u^{-\frac57} (1-u^2)^\frac12 du \\ & = \frac27 \int_0^1 u^\frac17 (1-u^2)^\frac12 du \\ & = \frac17 B \left(\frac47, \frac32 \right) \\ & = \frac{\Gamma \left(\frac47 \right)\Gamma \left(\frac32 \right)}{7\Gamma \left(\frac{29}{14} \right)} \\ & = \frac{\Gamma \left(\frac47 \right) \cdot \frac12 \sqrt{\pi}}{7 \cdot \frac{15}{14} \cdot \frac 1{14} \Gamma \left(\frac{1}{14} \right)} \\ & = \frac{14\Gamma \left(\frac47 \right) \sqrt{\pi}}{15\Gamma \left(\frac{1}{14} \right)} \end{aligned}

A + B + C + D + E + F = 14 + 4 + 7 + 15 + 1 + 14 = 55 \implies A+B+C+D+E+F = 14+4+7+15+1+14 = \boxed{55}

Gamma(15/14) can also be expanded as Gamma(1+ 1/14)=1/14*Gamma(1/14)

Kushal Bose - 5 years ago

Log in to reply

Yes, I have lodged a report.

Chew-Seong Cheong - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...