Time for easier problems

Calculus Level 3

0 1 Li 2 ( e x ) d x \large \int _{ 0 }^{ 1 }{\text{Li}_2(e^x) \, dx }

If the value of the integral above is equal to Li a ( b e ) ζ ( c ) , \text{Li}_a(be)-\zeta(c), where a , b a,b and c c are positive integers, find a + b + c a+b+c .

Notation :

  • Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n . { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \frac { { a }^{ k } }{ { k }^{ n } } }.
  • ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have,

0 1 L i 2 ( e x ) d x = k = 1 1 k 2 0 1 e k x d x \large \displaystyle\int_{0}^{1} Li_{2}(e^x) dx= \sum_{k=1}^{\infty} \frac{1}{k^2} \int_{0}^{1} e^{kx} dx

= k = 1 e k 1 k 3 \large \displaystyle= \sum_{k=1}^{\infty} \frac{e^k-1}{k^3}

= L i 3 ( e ) ζ ( 3 ) \large \displaystyle =Li_3(e)-\zeta(3) .

So, Answer is 3 + 3 + 1 = 7 \boxed{3+3+1=7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...