Who's up to the challenge? 73

Calculus Level 5

lim x 2 ( π ln 2 sin π x 2 sinh 2 π x π ln 16 x 4 2 sinh 2 2 π ) = A π ln B π ln C D sinh E F π \lim _{x\rightarrow2}{\left(\frac { \pi \ln { \left| 2\sin { \pi x } \right| } }{ 2\sinh ^{ 2 }{ \pi x } } -\frac { \pi \ln { \left| 16-{ x }^{ 4 } \right| } }{ 2\sinh ^{ 2 }{ 2\pi } }\right) } = \frac { A\pi \ln { B\pi } -\ln { C } }{ D\sinh ^{ E }{ F\pi } }

If the equation above holds true for positive integers A A , B B , C C , D D , E E , and F F , find A + B + C + D + E + F A+B+C+D+E+F .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 30, 2017

L = lim x 2 ( π ln 2 sin π x 2 sinh 2 π x π ln 16 x 4 2 sinh 2 π x ) = lim x 2 π 2 sinh 2 π x ln 2 sin π x 16 x 4 A 0/0 cases, L’H o ˆ pital’s rule applies. = lim x 2 π 2 sinh 2 π x ln 2 π cos π x 4 x 3 Differentiate us and down w.r.t. x . = π 2 sinh 2 2 π ln 2 π 32 = π ln π ln 16 2 sinh 2 2 π \begin{aligned} L & = \lim_{x \to 2} \left(\frac {\pi \ln |2\sin \pi x|}{2 \sinh^2 \pi x} - \frac {\pi \ln |16- x^4|}{2 \sinh^2 \pi x} \right) \\ & = \lim_{x \to 2} \frac \pi {2\sinh^2 \pi x} \cdot \ln \left|\frac {2\sin \pi x}{16- x^4} \right| & \small \color{#3D99F6} \text{A 0/0 cases, L'Hôpital's rule applies.} \\ & = \lim_{x \to 2} \frac \pi {2\sinh^2 \pi x} \cdot \ln \left|\frac {2 \pi \cos \pi x}{-4 x^3} \right| & \small \color{#3D99F6} \text{Differentiate us and down w.r.t. }x. \\ & = \frac \pi {2\sinh^2 2 \pi} \cdot \ln \left|\frac {2 \pi}{-32} \right| \\ & = \frac {\pi \ln \pi - \ln 16 }{2\sinh^2 2 \pi} \end{aligned}

A + B + C + D + E + F = 1 + 1 + 16 + 2 + 2 + 2 = 24 \implies A+B+C+D+E+F = 1+1+16+2+2+2 = \boxed{24}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...