Who's up to the challenge? 76

Algebra Level 5

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) ( 1 a + 1 b + 1 c + 1 d ) (1+a)(1+b)(1+c)(1+d)\left( \frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } +\frac { 1 }{ d } \right)

Find the minimum value of the above expression.

Note : a , b , c , d > 0 a,b,c,d>0


The answer is 37.925.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ariel Gershon
Aug 21, 2016

Once you know the answer, the proof is pretty simple using the AM-GM inequality:

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) ( 1 a + 1 b + 1 c + 1 d ) (1+a)(1+b)(1+c)(1+d)\left(\dfrac{1}{a}+ \dfrac{1}{b} + \dfrac{1}{c} +\dfrac{1}{d}\right) = 1 4 ( 4 3 + 4 3 + 4 3 + 4 a ) 1 4 ( 4 3 + 4 3 + 4 3 + 4 b ) 1 4 ( 4 3 + 4 3 + 4 3 + 4 c ) 1 4 ( 4 3 + 4 3 + 4 3 + 4 d ) 1 4 ( 4 a + 4 b + 4 c + 4 d ) = \dfrac{1}{4}\left(\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3} + 4a\right)\dfrac{1}{4}\left(\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3} + 4b\right)\dfrac{1}{4}\left(\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3} + 4c\right)\dfrac{1}{4}\left(\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3} + 4d\right)\dfrac{1}{4}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c} + \dfrac{4}{d}\right) ( 4 3 ) 3 4 a ( 4 3 ) 3 4 b ( 4 3 ) 3 4 c ( 4 3 ) 3 4 d 4 a 4 b 4 c 4 d 4 \ge \sqrt[4]{ \left(\dfrac{4}{3}\right)^3 4a \left(\dfrac{4}{3}\right)^3 4b \left(\dfrac{4}{3}\right)^3 4c \left(\dfrac{4}{3}\right)^3 4d \dfrac{4}{a} \dfrac{4}{b} \dfrac{4}{c} \dfrac{4}{d} } = 4 5 3 3 = \boxed{\dfrac{4^5}{3^3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...