n = 0 ∑ ∞ ( 4 n + 5 ) ( 4 n + 6 ) ( 4 n + 7 ) ( 4 n + 9 ) ( 4 n + 1 0 ) ( 4 n + 1 1 ) 2 4 0 = b a − c π
The equation above holds true for positive integers a , b and c , with a , b coprime. Find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We just proved that 22/7 is bigger than pi
S = n = 0 ∑ ∞ ( 4 n + 5 ) ( 4 n + 6 ) ( 4 n + 7 ) ( 4 n + 9 ) ( 4 n + 1 0 ) ( 4 n + 1 1 ) 2 4 0 = 4 6 2 4 0 n = 0 ∑ ∞ ( n + 4 5 ) ( n + 4 6 ) ( n + 4 7 ) ( n + 4 9 ) ( n + 4 1 0 ) ( n + 4 1 1 ) 1 = 4 6 2 4 0 m = 2 ∑ ∞ ( m − 4 3 ) ( m − 4 2 ) ( m − 4 1 ) ( m + 4 1 ) ( m + 4 2 ) ( m + 4 3 ) 1 [ taking n = m − 2 ] = 4 6 2 4 0 m = 2 ∑ ∞ [ m 2 − ( 4 3 ) 2 ] [ m 2 − ( 2 1 ) 2 ] [ m 2 − ( 4 1 ) 2 ] 1 = 4 6 2 4 0 m = 1 ∑ ∞ [ m 2 − ( 4 3 ) 2 ] [ m 2 − ( 2 1 ) 2 ] [ m 2 − ( 4 1 ) 2 ] 1 − 2 1 4 = − 2 1 4 + 4 6 2 4 0 m = 1 ∑ ∞ [ m 2 − ( 4 1 ) 2 A + m 2 − ( 2 1 ) 2 B + m 2 − ( 4 3 ) 2 C ] [ where A = 3 3 2 , B = − 1 5 2 5 6 , C = 5 3 2 ]
Now, using pole expansion of meromorphic functions, we know, cot z = z 1 + 2 z m = 1 ∑ ∞ z 2 − m 2 π 2 1 So, taking z = a π , we get m = 1 ∑ ∞ m 2 − a 2 1 = 2 a 2 1 − 2 a π cot ( a π )
⟹ S = − 2 1 4 + 4 6 2 4 0 [ A ( 8 − 2 π ) + 2 B + C ( 9 8 + 3 2 π ) ] = − 2 1 4 + 3 1 0 − π [ using values of A , B , C ] = 7 2 2 − π
So, a + b + c = 2 2 + 7 + 1 = 3 0
n = 0 ∑ ∞ ( 4 n + 5 ) ( 4 n + 6 ) ( 4 n + 7 ) ( 4 n + 9 ) ( 4 n + 1 0 ) ( 4 n + 1 1 ) 2 4 0 = Γ ( 7 ) 2 4 0 n = 0 ∑ ∞ Γ ( 4 n + 1 2 ) ( 4 n + 8 ) Γ ( 4 n + 5 ) Γ ( 7 ) = Γ ( 7 ) 2 4 0 n = 0 ∑ ∞ ( 4 n + 8 ) ∫ 0 1 t 4 n + 4 ( 1 − t ) 6 d t = Γ ( 7 ) 2 4 0 ∫ 0 1 t 4 ( 1 − t ) 6 n = 0 ∑ ∞ ( 4 n + 8 ) t 4 n d t = Γ ( 7 ) 2 4 0 ∫ 0 1 t 4 ( 1 − t ) 6 ( ( 1 − t 4 ) 2 4 t 4 + ( 1 − t 4 ) 8 ) = Γ ( 7 ) 2 4 0 ( 8 ∫ 0 1 ( ( 1 − t 4 ) t 4 ( 1 − t ) 6 ) d t + 4 ∫ 0 1 ( ( 1 − t 4 ) 2 t 8 ( 1 − t ) 6 ) d t ) = Γ ( 7 ) 2 4 0 ( 8 ( 1 8 ln 2 − 2 1 2 6 2 ) + 4 ( 4 2 1 1 4 7 − 4 3 π − 3 6 ln 2 ) ) = 6 ! 2 4 0 ( 7 6 6 − 3 π ) = 7 2 2 − π Γ ( 4 n + 1 2 ) Γ ( 4 n + 5 ) Γ ( 7 ) = ∫ 0 1 t 4 n + 4 ( 1 − t ) 6 d t n = 0 ∑ ∞ ( 4 n + 8 ) t 4 n = ( 1 − t 4 ) 2 4 t 4 + ( 1 − t 4 ) 8 ∫ 0 1 ( 1 − t 4 ) t 4 ( 1 − t ) 6 d t = 1 8 ln 2 − 2 1 2 6 2 ; ∫ 0 1 ( 1 − t 4 ) 2 t 8 ( 1 − t ) 6 = 4 2 1 1 4 7 − 4 3 π − 3 6 ln 2 Therefore a + b + c = 2 2 + 7 + 1 = 3 0
Problem Loading...
Note Loading...
Set Loading...
S = n = 0 ∑ ∞ ( 4 n + 5 ) ( 4 n + 6 ) ( 4 n + 7 ) ( 4 n + 9 ) ( 4 n + 1 0 ) ( 4 n + 1 1 ) 2 4 0 = 2 0 n = 0 ∑ ∞ ( ( 4 n + 5 ) ( 4 n + 9 ) ( 4 n + 1 0 ) 1 − ( 4 n + 6 ) ( 4 n + 7 ) ( 4 n + 1 1 ) 1 ) = n = 0 ∑ ∞ ( 4 n + 5 1 − 4 n + 9 5 + 4 n + 1 0 4 − 4 n + 6 4 + 4 n + 7 5 − 4 n + 1 1 1 ) = 5 1 − n = 0 ∑ ∞ 4 n + 9 4 − 3 2 + 7 5 + n = 0 ∑ ∞ 4 n + 1 1 4 = 1 0 5 2 6 − 4 n = 4 ∑ ∞ 2 n + 1 ( − 1 ) n = 1 0 5 2 6 − 4 ( n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n − 1 + 3 1 − 5 1 + 7 1 ) = 7 2 2 − 4 n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n = 7 2 2 − 4 tan − 1 ( 1 ) = 7 2 2 − π
⟹ a + b + c = 2 2 + 7 + 1 = 3 0