Who's up to the challenge? 12

Calculus Level 5

1 { x } 1 2 x d x \displaystyle \int_1^\infty \frac{\{x\} - \frac{1}{2}}{x} \, dx

can be represented as ln ( A π ) B \ln (\sqrt{A \pi}) - B , where A A and B B are positive integers. Find the value of 2 A + 2 B . 2A + 2B.

Definition : { x } = x x \{x\} = x - \lfloor x \rfloor is the fractional part of x x .


this is a part of Who's up to the challenge?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Feb 23, 2016

Rewrite the integral as:

1 { x } 1 2 x d x = 1 x x 1 2 x d x \displaystyle \int_1^{\infty} \frac{\{x\}-\frac{1}{2}}{x} dx = \int_1^{\infty} \frac{x-\lfloor x\rfloor -\frac{1}{2}}{x} dx

= lim k m = 1 k m m + 1 x m 1 2 x d x \displaystyle =\lim_{k\to \infty} \sum_{m=1}^{k} \int_m^{m+1} \frac{x - m -\frac{1}{2}}{x} dx

Now it's just basic integration:

= lim k m = 1 k ( 1 + ( m + 1 2 ) ln ( m ) ( m + 1 2 ) ln ( m + 1 ) ) \displaystyle = \lim_{k\to \infty} \sum_{m=1}^{k} \bigg(1+(m+\frac{1}{2} ) \ln (m) - (m+\frac{1}{2} ) \ln (m+1) \bigg)

= lim k m = 1 k ( 1 + ( m 1 + 1 + 1 2 ) ln ( m ) ( m + 1 2 ) ln ( m + 1 ) ) \displaystyle = \lim_{k\to \infty} \sum_{m=1}^{k} \bigg(1+(m-1+1+\frac{1}{2} ) \ln (m) - (m+\frac{1}{2} ) \ln (m+1) \bigg)

= lim k m = 1 k ( 1 + ln ( m ) + ( m 1 + 1 2 ) ln m ( m + 1 2 ) ln ( m + 1 ) Telescoping ) \displaystyle = \lim_{k\to \infty} \sum_{m=1}^{k} \bigg(1+\ln (m) + \underbrace{(m-1+\frac{1}{2} ) \ln m - (m+\frac{1}{2} ) \ln (m+1)}_\text{Telescoping} \bigg)

= lim k ( k + ln ( k ! ) ( k + 1 2 ) ln ( k + 1 ) ) \displaystyle =\lim_{k\to \infty} \big( k+\ln (k!) -(k+\frac{1}{2} ) \ln (k+1) \big)

= lim k ( ln ( e k ) + ln ( k ! ) ln ( ( k + 1 ) ( k + 1 2 ) ) ) \displaystyle =\lim_{k\to \infty} \Bigg( \ln (e^k) +\ln (k!) - \ln \bigg((k+1)^{(k+\frac{1}{2} )}\bigg) \Bigg)

Write as a single Logarithm:

= lim k ln ( k ! e k ( k + 1 ) ( k + 1 2 ) ) \displaystyle = \lim_{k\to \infty} \ln \Bigg(\frac{k! e^k}{(k+1)^{(k+\frac{1}{2} )} } \Bigg)

Use Stirling's formula for very large arguments of the factorial:

= lim k ln ( 2 π k ( k e ) k e k ( k + 1 ) ( k + 1 2 ) ) \displaystyle = \lim_{k\to \infty} \ln \Bigg(\frac{\sqrt{2\pi k} (\frac{k}{e})^k e^k}{(k+1)^{(k+\frac{1}{2} )} } \Bigg)

= lim k ln ( 2 π k k + 1 2 ( k + 1 ) ( k + 1 2 ) ) \displaystyle = \lim_{k\to \infty} \ln \Bigg(\frac{\sqrt{2\pi} k^{k+\frac{1}{2}} }{(k+1)^{(k+\frac{1}{2} )} } \Bigg)

= lim k ln ( 2 π ( 1 + 1 k ) k + 1 2 ) \displaystyle = \lim_{k\to \infty} \ln \Bigg(\frac{\sqrt{2\pi}}{ (1+\frac{1}{k})^{k+\frac{1}{2}}} \Bigg)

By the definition of the Euler Number e e :

= ln ( 2 π e ) = ln ( 2 π ) 1 \displaystyle = \ln (\frac{\sqrt{2\pi}}{e}) = \boxed{\ln (\sqrt{2\pi} ) - 1}

Moderator note:

Good clear explanation! Thanks for showing the steps and how one can proceed quite naturally.

Thanks for typing the solution :)

Aman Rajput - 5 years, 3 months ago

The most challenging part is converting it into logarithm. It is difficult to guess that. As such if we see, the summation seems to diverge. But it doesn't. Nice problem @hummus

Aditya Kumar - 5 years, 3 months ago

Log in to reply

thanks! :)

Hamza A - 5 years, 3 months ago

Awsome man supper cool

Nivedit Jain - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...