Who's up to the challenge?16

Calculus Level 5

0 e x 2 x ln x d x = A γ + ln ( B ln ( C ) ) ln ( D ) F A , B , C , D , F N \displaystyle\int _{ 0 }^{ \infty }{ { e }^{ -x }{ 2 }^{ x }\ln x\, dx=\dfrac { A\gamma +\ln(B-\ln(C)) }{ \ln(D)-F } } \\ \\ A,B,C,D,F\quad \in \mathrm{N}

find A + B + C + D + F A+B+C+D+F .


Inspiration .


this is a part of Who's up to the challenge?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohan Shinde
Dec 10, 2018

Let I ( a ) = 0 e ( 1 ln 2 ) x x a d x I(a)=\int_0^{\infty} e^{-(1-\ln 2)x} x^a dx

Hence we need I ( 0 ) I'(0)

It is quite known that J = 0 e b x x a d x = Γ ( a + 1 ) b a + 1 J=\int_0^{\infty} e^{-bx} x^a dx= \frac {\Gamma(a+1)}{b^{a+1}}

On substituting b = 1 ln 2 b=1-\ln 2 .

We get I ( a ) = Γ ( a + 1 ) ( 1 ln 2 ) a + 1 I(a)=\frac {\Gamma(a+1)}{(1-\ln 2)^{a+1}}

Hence I ( a ) = Γ ( a + 1 ) ( 1 ln 2 ) a + 1 ( ψ ( a + 1 ) ln ( 1 ln 2 ) ) I'(a) =\frac {\Gamma(a+1)}{(1-\ln 2)^{a+1}}\left(\psi(a+1)-\ln(1-\ln 2)\right)

Substitute a = 0 a=0 to get the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...