If the value of the series above is equal to , where and are positive integers, find .
Notation : denotes the Euler-Mascheroni constant .
This is a part of Who's up to the challenge?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let's define: H n = k = 1 ∑ n k 1 = 1 + 2 1 + 3 1 + 4 1 + ⋯ + n 1 A n = k = 1 ∑ n k ( − 1 ) k + 1 = 1 − 2 1 + 3 1 − 4 1 + ⋯ ± n 1 For an even number 2 n , A 2 n = 1 − 2 1 + 3 1 − 4 1 + ⋯ − 2 n 1 = ( 1 + 2 1 + 3 1 + 4 1 + ⋯ + 2 n 1 ) − 2 ( 2 1 + 6 1 + 8 1 + ⋯ + 2 n 1 ) = H 2 n − H n Also note that, n → ∞ lim A n = 1 − 2 1 + 3 1 − 4 1 + ⋯ = ln 2
Now let's let S denote the sum of this series. S = k = 1 ∑ ∞ n = 2 k − 1 − 1 ∑ 2 k 2 n ( 2 n − 1 ) k The fraction 2 n ( 2 n − 1 ) 1 can be written as 2 n − 1 1 − 2 n 1 . So, S = k = 1 ∑ ∞ k n = 2 k − 1 − 1 ∑ 2 k 2 n − 1 1 − 2 n 1 = 1 ( 3 1 − 4 1 ) + 2 ( 5 1 − 6 1 + 7 1 − 8 1 ) + 3 ( 9 1 − 1 0 1 + 1 1 1 − 1 2 1 + 1 3 1 − 1 4 1 + 1 5 1 − 1 6 1 ) + … Add the equation 0 = ln 2 − ( 1 − 2 1 + 3 1 − 4 1 + … ) . S = ln 2 − ( 1 − 2 1 ) + 1 ( 5 1 − 6 1 + 7 1 − 8 1 ) + 2 ( 9 1 − 1 0 1 + 1 1 1 − 1 2 1 + 1 3 1 − 1 4 1 + 1 5 1 − 1 6 1 ) + … Move ( 1 − 2 1 ) to the left hand side, and we can see that we have reduced the coefficient on each of the terms by one. S + ( 1 − 2 1 ) = ln 2 + 1 ( 5 1 − 6 1 + 7 1 − 8 1 ) + 2 ( 9 1 − 1 0 1 + 1 1 1 − 1 2 1 + 1 3 1 − 1 4 1 + 1 5 1 − 1 6 1 ) + … Let's repeat this. Add 0 = ln 2 − ( 1 − 2 1 + 3 1 − 4 1 + … ) . S + ( 1 − 2 1 ) = 2 ln 2 − ( 1 − 2 1 + 3 1 − 4 1 ) + 1 ( 9 1 − 1 0 1 + 1 1 1 − 1 2 1 + 1 3 1 − 1 4 1 + 1 5 1 − 1 6 1 ) + … S + ( 1 − 2 1 ) + ( 1 − 2 1 + 3 1 − 4 1 ) = 2 ln 2 + 1 ( 9 1 − 1 0 1 + 1 1 1 − 1 2 1 + 1 3 1 − 1 4 1 + 1 5 1 − 1 6 1 ) + … If we repeat this procedure n times, we'll get: S + A 2 + A 4 + A 8 + ⋯ + A 2 n = n ln 2 + 1 ( 2 n + 1 + 1 1 − 2 n + 1 + 2 1 + ⋯ − 2 n + 2 1 ) + 2 ( … ) + … One can convince oneself that the terms on the right of n ln 2 approach 0 in the limit of large n. What about the left hand side? Remember, A 2 n = H 2 n − H n . So we get: S + ( H 2 − H 1 ) + ( H 4 − H 2 ) + ( H 8 − H 4 ) + ⋯ + ( H 2 n − H 2 n − 1 ) = n ln 2 + 1 ( 2 n + 1 + 1 1 − 2 n + 1 + 2 1 + ⋯ − 2 n + 2 1 ) + … S − H 1 + H 2 n = n ln 2 + 1 ( 2 n + 1 + 1 1 − 2 n + 1 + 2 1 + ⋯ − 2 n + 2 1 ) + … S = 1 + ln 2 n − H 2 n + 1 ( 2 n + 1 + 1 1 − 2 n + 1 + 2 1 + ⋯ − 2 n + 2 1 ) + … The Euler-Mascheroni constant is defined by γ = N → ∞ lim ( H N − ln N ) So, taking the limit as n tends to infinity, we get: S = 1 − γ and A + B = 2