Who's up to the challenge? 2

Calculus Level 5

0 x 9 ln x e x d x \large \int_0^\infty \dfrac{x^9 \ln x}{e^x} \, dx

If the above integral can be expressed as 144 ( B C γ ) , 144(B -C\gamma), where B B and C C are integers, find B + C + 144 B+C+144 .

Notation: γ \gamma denotes the Euler-Mascheroni constant γ = lim n ( ln n + k = 1 n 1 k ) 0.5772. \displaystyle \gamma = \lim_{n\to\infty} \left( - \ln n + \sum_{k=1}^n \dfrac1k \right) \approx 0.5772 .


this is a part of Who's up to the challenge?


The answer is 9793.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Feb 18, 2016

Γ ( n ) = 0 x n 1 e x dx Γ ( n ) = 0 ln ( x ) x n 1 e x dx given integral = Γ ( 10 ) = Γ ( 10 ) ψ ( 10 ) = 9 ! ( ψ ( 1 ) + H 9 ) = 9 ! ( H 9 γ ) = 144 ( 7129 2520 γ ) 144 + 7129 + 2520 = 9793 \Gamma(n)=\int_0^\infty x^{n-1}e^{-x}\text{dx}\\ \Gamma'(n)=\int_0^\infty \ln(x)x^{n-1}e^{-x}\text{dx}\\ \text{given integral}= \Gamma'(10)=\Gamma(10)\psi(10)\\ =9!\left(\psi(1)+H_9\right)=9!(H_9-\gamma)=144(7129-2520\gamma)\\ \therefore 144+7129+2520=\boxed{9793}

exactly as intended!

Hamza A - 5 years, 3 months ago

Sweet indeed

Parth Lohomi - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...