Who's up to the challenge? 20

Calculus Level 5

0 x 3 e 3 x sin x d x \large \int _{ 0 }^{ \infty } { x }^{ 3 }{ e }^{ -3x }\sin { x } \, dx

If the integral above is the form of a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


This is a part of Who's up to the challenge .


The answer is 661.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aritra Das
Mar 9, 2016

We just look at the imaginary part of the integral: I = 0 x 3 e 3 x e i x d x = 0 x 3 e ( 3 i ) x d x I= \int_0^{\infty} x^3 e^{-3x} e^{ix} dx = \int_0^{\infty} x^3 e^{-(3-i)x} dx

With the substitution ( 3 i ) x = t (3-i)x=t and ( 3 i ) d x = d t (3-i)dx = dt , we get: I = 1 ( 3 i ) 4 0 t 3 e t d t = 7 + 24 i 2500 Γ ( 4 ) I=\frac{1}{(3-i)^4} \int_0^{\infty} t^3 e^{-t} dt = \frac{7+24i}{2500} \Gamma(4)

Using the fact that for integers, Γ ( n ) = ( n 1 ) ! \Gamma(n) = (n-1)! , the imaginary part of the integral is 24 × 6 2500 = 36 625 \frac{24 \times 6}{2500} = \frac{36}{625} . Hence, a + b = 661 a+b=661

Same solution!!

Aakash Khandelwal - 5 years, 3 months ago

Hello Aritra , how did you substitute sin x by e^ix , and why did you find only imaginary part of the integral

Ujjwal Mani Tripathi - 5 years, 2 months ago

Log in to reply

e i x = cos x + i sin x e^{ix} = \cos x + i \sin x , Since integration is linear, the real part of the integrand gives the real part of the result and the same also holds for the imaginary part.

Aritra Das - 5 years, 2 months ago

is doing ( 3 + i ) = (3+i)*\infty = \infty\ ok?

neelesh vij - 3 years, 11 months ago

Let the integral be I I . Then we have:

I = 0 x 3 e 3 x sin x d x = 0 3 u 3 ( e 3 x u 27 ) sin x d x where u = 1 = 1 27 ˙ 3 u 3 0 e 3 x u sin x d x Let t = 3 x u = 1 27 ˙ 3 u 3 ( 1 3 u 0 e t sin ( t 3 u ) d t ) By Maclaurin series: = 1 27 ˙ 3 u 3 ( 1 3 u 0 e t n = 0 ( 1 ) n ( t 3 u ) 2 n + 1 ( 2 n + 1 ) ! d t ) = 1 27 ˙ 3 u 3 ( 1 3 u n = 0 ( 1 ) n 0 t 2 n + 1 e t d t ( 3 u ) 2 n + 1 ( 2 n + 1 ) ! ) = 1 27 ˙ 3 u 3 ( 1 3 u n = 0 ( 1 ) n Γ ( 2 n + 2 ) ( 3 u ) 2 n + 1 ( 2 n + 1 ) ! ) = 1 27 ˙ 3 u 3 ( 1 3 u n = 0 ( 1 ) n ( 2 n + 1 ) ! ( 3 u ) 2 n + 1 ( 2 n + 1 ) ! ) = 1 27 ˙ 3 u 3 ( 1 ( 3 u ) 2 n = 0 ( 1 ( 3 u ) 2 ) n ) = 1 27 ˙ 3 u 3 ( 1 ( 3 u ) 2 ( 1 1 + 1 ( 3 u ) 2 ) ) = 1 27 ˙ 3 u 3 ( 1 9 u 2 + 1 ) = 1 27 ( 1944 ( 9 u 2 1 ) ( 9 u 2 + 1 ) 4 ) Putting u = 1 = 36 625 \begin{aligned} I & = \int_0^\infty \color{#3D99F6}{x^3 e^{-3x}} \sin x \space dx \\ & = \int_0^\infty \color{#3D99F6}{\frac{\partial^3}{\partial u^3} \left(\frac{e^{-3xu}}{-27}\right)}\sin x \space dx \quad \quad \small \color{#3D99F6}{\text{where }u=1} \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \int_0^\infty e^{-3xu} \sin x \space dx \quad \quad \small \color{#3D99F6}{\text{Let }t = 3xu} \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \left( \frac{1}{3u} \int_0^\infty e^{-t} \color{#3D99F6}{\sin \left(\frac{t}{3u}\right)} \space dt \right) \quad \quad \small \color{#3D99F6}{\text{By Maclaurin series:}} \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \left( \frac{1}{3u} \int_0^\infty e^{-t} \color{#3D99F6}{\sum_{n=0}^\infty \frac{(-1)^n \left(\frac{t}{3u}\right)^{2n+1}}{(2n+1)!}} \space dt \right) \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \left( \frac{1}{3u} \sum_{n=0}^\infty \frac{(-1)^n \int_0^\infty t^{2n+1}e^{-t}\space dt}{(3u)^{2n+1}(2n+1)!} \right) \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \left( \frac{1}{3u} \sum_{n=0}^\infty \frac{(-1)^n \Gamma (2n+2)}{(3u)^{2n+1}(2n+1)!} \right) \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \left( \frac{1}{3u} \sum_{n=0}^\infty \frac{(-1)^n (2n+1)!}{(3u)^{2n+1}(2n+1)!} \right) \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \left( \frac{1}{(3u)^2} \sum_{n=0}^\infty \left(\frac{-1}{(3u)^2} \right)^n \right) \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \left( \frac{1}{(3u)^2} \left(\frac{1} {1+\frac{1}{(3u)^2}} \right) \right) \\ & = - \frac{1}{27} \dot{} \frac{\partial^3}{\partial u^3} \left(\frac{1} {9u^2+1} \right) \\ & = \frac{1}{27} \left(\frac{1944(9u^2-1)}{(9u^2+1)^4} \right) \quad \quad \small \color{#3D99F6}{\text{Putting } u = 1} \\ & = \frac{36}{625} \end{aligned}

a + b = 36 + 625 = 661 \Rightarrow a + b = 36 + 625 = \boxed{661}

Amol Pai
Mar 13, 2017

We have

I = 0 x 3 e 3 x s i n x d x I=\int_{0}^{\infty} x^3 e^{-3x} sinx dx

Thus, we write

I = 0 x 3 e a x s i n x d x I=\int_{0}^{\infty} x^3 e^{-ax} sinx dx where a=3

Integrating thrice with respect to a, we get

I = 0 e a x s i n x d x I'''=-\int_{0}^{\infty} e^{-ax} sinx dx

Applying parts by taking e a x e^{-ax} as the first function, we get

I = 1 1 + a 2 I'''= \frac{-1}{1+a^2}

Finally, differentiating thrice with respect to a, we get

I = 24 a ( a 2 1 ) ( 1 + a 2 ) 4 I= \frac{24a(a^2-1)}{(1+a^2)^4}

Putting a=3, we get

I = 36 625 I=\frac{36}{625}

Thus, a=36, b=625, a+b= 661 \boxed{661}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...