∫ 0 ∞ x 3 e − 3 x sin x d x
If the integral above is the form of b a , where a and b are coprime positive integers, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Same solution!!
Hello Aritra , how did you substitute sin x by e^ix , and why did you find only imaginary part of the integral
Log in to reply
e i x = cos x + i sin x , Since integration is linear, the real part of the integrand gives the real part of the result and the same also holds for the imaginary part.
is doing ( 3 + i ) ∗ ∞ = ∞ ok?
Let the integral be I . Then we have:
I = ∫ 0 ∞ x 3 e − 3 x sin x d x = ∫ 0 ∞ ∂ u 3 ∂ 3 ( − 2 7 e − 3 x u ) sin x d x where u = 1 = − 2 7 1 ˙ ∂ u 3 ∂ 3 ∫ 0 ∞ e − 3 x u sin x d x Let t = 3 x u = − 2 7 1 ˙ ∂ u 3 ∂ 3 ( 3 u 1 ∫ 0 ∞ e − t sin ( 3 u t ) d t ) By Maclaurin series: = − 2 7 1 ˙ ∂ u 3 ∂ 3 ( 3 u 1 ∫ 0 ∞ e − t n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( 3 u t ) 2 n + 1 d t ) = − 2 7 1 ˙ ∂ u 3 ∂ 3 ( 3 u 1 n = 0 ∑ ∞ ( 3 u ) 2 n + 1 ( 2 n + 1 ) ! ( − 1 ) n ∫ 0 ∞ t 2 n + 1 e − t d t ) = − 2 7 1 ˙ ∂ u 3 ∂ 3 ( 3 u 1 n = 0 ∑ ∞ ( 3 u ) 2 n + 1 ( 2 n + 1 ) ! ( − 1 ) n Γ ( 2 n + 2 ) ) = − 2 7 1 ˙ ∂ u 3 ∂ 3 ( 3 u 1 n = 0 ∑ ∞ ( 3 u ) 2 n + 1 ( 2 n + 1 ) ! ( − 1 ) n ( 2 n + 1 ) ! ) = − 2 7 1 ˙ ∂ u 3 ∂ 3 ( ( 3 u ) 2 1 n = 0 ∑ ∞ ( ( 3 u ) 2 − 1 ) n ) = − 2 7 1 ˙ ∂ u 3 ∂ 3 ( ( 3 u ) 2 1 ( 1 + ( 3 u ) 2 1 1 ) ) = − 2 7 1 ˙ ∂ u 3 ∂ 3 ( 9 u 2 + 1 1 ) = 2 7 1 ( ( 9 u 2 + 1 ) 4 1 9 4 4 ( 9 u 2 − 1 ) ) Putting u = 1 = 6 2 5 3 6
⇒ a + b = 3 6 + 6 2 5 = 6 6 1
We have
I = ∫ 0 ∞ x 3 e − 3 x s i n x d x
Thus, we write
I = ∫ 0 ∞ x 3 e − a x s i n x d x where a=3
Integrating thrice with respect to a, we get
I ′ ′ ′ = − ∫ 0 ∞ e − a x s i n x d x
Applying parts by taking e − a x as the first function, we get
I ′ ′ ′ = 1 + a 2 − 1
Finally, differentiating thrice with respect to a, we get
I = ( 1 + a 2 ) 4 2 4 a ( a 2 − 1 )
Putting a=3, we get
I = 6 2 5 3 6
Thus, a=36, b=625, a+b= 6 6 1
Problem Loading...
Note Loading...
Set Loading...
We just look at the imaginary part of the integral: I = ∫ 0 ∞ x 3 e − 3 x e i x d x = ∫ 0 ∞ x 3 e − ( 3 − i ) x d x
With the substitution ( 3 − i ) x = t and ( 3 − i ) d x = d t , we get: I = ( 3 − i ) 4 1 ∫ 0 ∞ t 3 e − t d t = 2 5 0 0 7 + 2 4 i Γ ( 4 )
Using the fact that for integers, Γ ( n ) = ( n − 1 ) ! , the imaginary part of the integral is 2 5 0 0 2 4 × 6 = 6 2 5 3 6 . Hence, a + b = 6 6 1