Time for easier problems

Calculus Level 4

k = 1 sin k k 2 = A B i ( Li 2 ( e C i ) Li 2 ( e D i ) ) \large \displaystyle\sum _{ k=1 }^{ \infty }{ \frac { \sin { k } }{ { k }^{ 2 } } =\frac { A }{ B } i({ \text{Li} }_{ 2 }({ e }^{ -Ci } }) -{\text{Li} }_{ 2 }({ e }^{ Di }))

The equation above holds true for positive integers A , B , C A,B,C and D D , with A , B A,B coprime. Find A + B + C + D A+B+C+D .

Notation : Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n . { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \frac { { a }^{ k } }{ { k }^{ n } } }.

Clarification : i = 1 i=\sqrt{-1}


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Mar 8, 2016

We use: sin ( k ) = e i k e i k 2 i \sin { \left( k \right) } =\frac { { e }^{ ik }-{ e }^{ -ik } }{ 2i }

k = 1 sin ( k ) k 2 = k = 1 e i k e i k 2 i k 2 \sum _{ k=1 }^{ \infty }{ \frac { \sin { \left( k \right) } }{ { k }^{ 2 } } } =\sum _{ k=1 }^{ \infty }{ \frac { { e }^{ ik }-{ e }^{ -ik } }{ 2i{ k }^{ 2 } } }

k = 1 sin ( k ) k 2 = i 2 k = 1 e i k + e i k k 2 \sum _{ k=1 }^{ \infty }{ \frac { \sin { \left( k \right) } }{ { k }^{ 2 } } } =\frac { i }{ 2 } \sum _{ k=1 }^{ \infty }{ \frac { -{ e }^{ ik }+{ e }^{ -ik } }{ { k }^{ 2 } } }

k = 1 sin ( k ) k 2 = i 2 { L i 2 ( e i ) L i 2 ( e i ) } \sum _{ k=1 }^{ \infty }{ \frac { \sin { \left( k \right) } }{ { k }^{ 2 } } } =\frac { i }{ 2 } \left\{ { Li }_{ 2 }\left( { e }^{ -i } \right) -{ Li }_{ 2 }\left( { e }^{ i } \right) \right\}

exact intended solution,upvoted! :)

Hamza A - 5 years, 3 months ago

Log in to reply

Level 5 makes me laugh :D

Aditya Kumar - 5 years, 3 months ago

Log in to reply

why is this showing as level 5?shouldn't it change if i made the wrong level for the problem,if it stays like that,learn some Euler guys!

Hamza A - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...