Who's up to the challenge? 26

Calculus Level 5

0 1 { ( 1 ) 1 x x } d x = A + B ln ( C π ) \large \int_0^1 \left \{ \dfrac{(-1)^{\big\lfloor \frac1x\big\rfloor }}{x}\right \} \, dx = A + B \ln \left( \dfrac C{\pi} \right)

The equation above holds true for positive integers A , B , A,B, and C C . Find A + B + C A+B+C .

Notation : { } \{ \cdot \} denotes the fractional part function .


This is a part of " Who's up to the challenge? "


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hamza A
Apr 1, 2016

Let 1 x = u \frac { 1 }{ x } =u then the above integral is

1 { u ( 1 ) u } u 2 d u \displaystyle\int _{ 1 }^{ \infty }{ \frac { \left\{ u(-1)^{ \left\lfloor u \right\rfloor } \right\} }{ { u }^{ 2 } } du } = n = 1 n n + 1 { ( 1 ) u u } u 2 d u = \displaystyle\sum _{ n=1 }^{ \infty }{ \displaystyle\int _{ n }^{ n+1 }{ \frac { \left\{ (-1)^{ \left\lfloor u \right\rfloor }u \right\} }{ { u }^{ 2 } } du } } = n = 1 n n + 1 { ( 1 ) n u } u 2 d u = \displaystyle\sum _{ n=1 }^{ \infty }{ \int _{ n }^{ n+1 }{ \frac { \left\{ (-1)^{ n }u \right\} }{ { u }^{ 2 } } du } } = n = 1 2 n 1 2 n { u } u 2 d u + n = 1 2 n 2 n + 1 { u } u 2 d u = \displaystyle\sum _{ n=1 }^{ \infty }{ \displaystyle\int _{ 2n-1 }^{ 2n }{ \frac { \{ -u\} }{ { u }^{ 2 } } du } } +\displaystyle\sum _{ n=1 }^{ \infty }{ \int _{ 2n }^{ 2n+1 }{ \frac { \{ u\} }{ { u }^{ 2 } } du } } = n = 1 2 n 1 2 n 1 { u } u 2 d u + n = 1 2 n 2 n + 1 u 2 n u 2 d u = \displaystyle\sum _{ n=1 }^{ \infty }{ \displaystyle\int _{ 2n-1 }^{ 2n }{ \frac { 1-\{ u\} }{ { u }^{ 2 } } du } } +\displaystyle\sum _{ n=1 }^{ \infty } \int _{ 2n }^{ 2n+1 }{ { \frac { u-2n }{ u^{ 2 } } du } } = n = 1 2 n 1 2 n 2 n u u 2 d u + n = 1 ( ln ( 2 n + 1 2 n ) 1 2 n + 1 ) = \displaystyle\sum _{ n=1 }^{ \infty }{ \int _{ 2n-1 }^{ 2n }{ \frac { 2n-u }{ { u }^{ 2 } } du } } +\displaystyle\sum _{ n=1 }^{ \infty }{ (\ln { \left( \frac { 2n+1 }{ 2n } \right) } -\frac { 1 }{ 2n+1 } )} = n = 1 ( 1 2 n 1 ln ( 2 n 2 n 1 ) ) + n = 1 ( ln ( 2 n + 1 2 n ) 1 2 n + 1 ) = \displaystyle\sum _{ n=1 }^{ \infty }{ (\frac { 1 }{ 2n-1 } -\ln { \left( \frac { 2n }{ 2n-1 } \right) } ) } +\displaystyle\sum _{ n=1 }^{ \infty }{ (\ln { \left( \frac { 2n+1 }{ 2n } \right) } -\frac { 1 }{ 2n+1 } )} = n = 1 ln ( ( 2 n + 1 ) ( 2 n 1 ) 4 n 2 ) = \displaystyle\sum _{ n=1 }^{ \infty }{ \ln { \left( \frac { (2n+1)(2n-1) }{ 4{ n }^{ 2 } } \right) } } = 1 + ln [ n = 1 ( 2 n + 1 ) ( 2 n 1 ) 4 n 2 ] =1+\ln { \left[ \displaystyle\prod _{ n=1 }^{ \infty }{ \frac { (2n+1)(2n-1) }{ 4{ n }^{ 2 } } } \right] } = 1 + ln ( 2 π ) =\boxed{1+\ln { \left( \frac { 2 }{ \pi } \right) } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...