Who's up to the challenge? 4

Calculus Level 5

0 1 x sin x cos x e x d x \large \displaystyle\int _{ 0 }^{ 1 }{ \frac { x\sin { x } \cos { x } }{ { e }^{ x } } } \, dx

Can be represented in the form

A e + sin B + C cos D F e -\dfrac { -Ae+\sin { B } +C\cos { D } }{ Fe }

where A , B , C , D , F A,B,C,D,F are positive integers.

Find the minimum value of A + B + C + D + F A+B+C+D+F .


this is a part of Who's up to the challenge?


The answer is 38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 18, 2016

0 1 x sin x cos x e x d x = 0 1 x sin ( 2 x ) 2 e x d x = i 4 0 1 x e x ( e 2 x i e 2 x i ) d x = i 4 0 1 x ( e ( 1 + 2 i ) x e ( 1 2 i ) x ) d x = i 4 0 1 x ( e ( 1 + 2 i ) a x e ( 1 2 i ) a x ) d x where a = 1 = i 4 0 1 a ( e ( 1 + 2 i ) a x 1 + 2 i + e ( 1 2 i ) a x 1 2 i ) d x = i 4 × a 0 1 ( e ( 1 + 2 i ) a x 1 + 2 i + e ( 1 2 i ) a x 1 2 i ) d x = i 4 × a [ e ( 1 + 2 i ) a x a ( 1 + 2 i ) 2 e ( 1 2 i ) a x a ( 1 2 i ) 2 ] 0 1 = i 4 × a ( e ( 1 + 2 i ) a 1 a ( 3 + 4 i ) e ( 1 2 i ) a 1 a ( 3 4 i ) ) = i 4 × a ( e ( 1 + 2 i ) a 1 a ( 3 4 i ) e ( 1 2 i ) a 1 a ( 3 + 4 i ) ) = i 4 ( e ( 1 + 2 i ) a 1 a 2 ( 3 4 i ) ( 1 + 2 i ) e ( 1 + 2 i ) a a ( 3 4 i ) + e ( 1 2 i ) a 1 a 2 ( 3 + 4 i ) + ( 1 2 i ) e ( 1 2 i ) a a ( 3 + 4 i ) ) = i 4 ( 1 2 ( 1 + i ) e ( 1 + 2 i ) 3 4 i + 2 ( 1 i ) e ( 1 2 i ) 1 3 + 4 i ) Putting a = 1 = i 4 ( 8 i 2 ( 3 + 4 i ) ( 1 + i ) e ( 1 + 2 i ) + 2 ( 3 4 i ) ( 1 i ) e ( 1 2 i ) 25 ) = i 25 ( 2 i + ( 1 7 i ) e ( 1 + 2 i ) ( 1 + 7 i ) e ( 1 2 i ) 2 ) = i 25 ( 2 i + e 1 ( e 2 i e 2 i 7 i e 2 i 7 i e 2 i ) 2 ) = 2 e + sin ( 2 ) + 7 cos ( 2 ) 25 e \begin{aligned} \int_0^1 \frac{x\sin x \cos x}{e^x} dx & = \int_0^1 \frac{x\sin (2x)}{2e^x} dx \\ & = \frac{i}{4} \int_0^1x e^{-x} \left( e^{-2xi}-e^{2xi} \right) dx \\ & = \frac{i}{4} \int_0^1x \left( e^{-(1+2i)x}-e^{-(1-2i)x} \right) dx \\ & = \frac{i}{4} \int_0^1 x \left( e^{-(1+2i)\color{#3D99F6}{a}x}-e^{-(1-2i)\color{#3D99F6}{a}x} \right) dx \quad \quad \small \color{#3D99F6}{\text{where }a=1} \\ & = \frac{i}{4} \int_0^1 \color{#3D99F6}{\frac{\partial}{\partial a}} \left(- \frac{e^{-(1+2i)\color{#3D99F6}{a}x}}{\color{#3D99F6}{1+2i}} + \frac{e^{-(1-2i)\color{#3D99F6}{a}x}}{\color{#3D99F6}{1-2i}} \right) dx \\ & = \frac{i}{4} \times \frac{\partial}{\partial a} \int_0^1 \left(-\frac{e^{-(1+2i)ax}}{1+2i} + \frac{e^{-(1-2i)ax}}{1-2i} \right) dx \\ & = \frac{i}{4} \times \frac{\partial}{\partial a} \left[\frac{e^{-(1+2i)ax}}{a(1+2i)^2} - \frac{e^{-(1-2i)ax}}{a(1-2i)^2} \right]_0^1 \\ & = \frac{i}{4} \times \frac{\partial}{\partial a} \left(\frac{e^{-(1+2i)a}-1}{a(-3+4i)} - \frac{e^{-(1-2i)a}-1}{a(-3-4i)} \right) \\ & = -\frac{i}{4} \times \frac{\partial}{\partial a} \left(\frac{e^{-(1+2i)a}-1}{a(3-4i)} - \frac{e^{-(1-2i)a}-1}{a(3+4i)} \right) \\ & = \small - \frac{i}{4} \left(-\frac{e^{-(1+2i)a}-1}{a^2(3-4i)} - \frac{(1+2i) e^{-(1+2i)a}}{a(3-4i)} + \frac{e^{-(1-2i)a}-1}{a^2(3+4i)} + \frac{(1-2i)e^{-(1-2i)a}}{a(3+4i)} \right) \\ & = \small - \frac{i}{4} \left(\frac{1-2(1+i) e^{-(1+2i)}}{3-4i} + \frac{2(1-i)e^{-(1-2i)}-1}{3+4i} \right) \quad \quad \color{#3D99F6}{\text{Putting }a=1} \\ & = \small - \frac{i}{4} \left(\frac{8i-2(3+4i)(1+i)e^{-(1+2i)}+2(3-4i)(1-i)e^{-(1-2i)}}{25} \right) \\ & = \small - \frac{i}{25} \left(2i + \frac{(1-7i)e^{-(1+2i)}-(1+7i)e^{-(1-2i)}}{2} \right) \\ & = \small - \frac{i}{25} \left(2i + \frac{e^{-1}\left(e^{-2i}-e^{2i} -7ie^{-2i}-7ie^{2i} \right)}{2} \right) \\ & = - \frac{-2e+\sin(2)+7\cos(2)}{25e} \end{aligned}

A + B + C + D + F = 2 + 2 + 7 + 2 + 25 = 38 \Rightarrow A+B+C+D+F = 2+2+7+2+25 = \boxed{38}

i love how most of your solutions to theses types of problems include complex numbers

awesome solution !

Hamza A - 5 years, 3 months ago

Log in to reply

Thanks. I love complex numbers too.

Chew-Seong Cheong - 5 years, 3 months ago

Thanks Hummus a for sharing this yet another classic piece of integration.

Akshay Yadav - 5 years, 3 months ago

Log in to reply

happy that you enjoyed it ! :)

Hamza A - 5 years, 3 months ago

I think the question should be changed to have a 'minus sign' - in the very front of the answer format.

Bob Kadylo - 5 years ago

I think there should be a 'minus sign' - , in front of the entire fraction, because the numeric approximation to this integral is + . 10949 +.10949 . As it stands right now, the result is negative . The area is definitely above the x-axis.

Bob Kadylo - 5 years ago

Log in to reply

Yes, you are right.

Chew-Seong Cheong - 5 years ago

Log in to reply

Now that you confirm my observation, I should just edit the question as well. I hope @Hummus A doesn't mind.

Bob Kadylo - 5 years ago

Let 2 I ( a ) = 0 1 e a x s i n ( 2 x ) d x \Large 2I(a) = \int_{0}^{1} e^{ax}sin(2x) dx So 2 I ( a ) = 0 1 x e a x s i n ( 2 x ) d x \Large 2I'(a) = \int_{0}^{1} xe^{ax}sin(2x) dx So we need I ( 1 ) I'(-1) . Using the standard integral

We have :-

2 I ( a ) = e a ( a s i n ( 2 ) 2 c o s 2 ) a 2 + 4 + 2 a 2 + 4 \Large 2I(a) = \frac{e^{a}(asin(2)-2cos2)}{a^{2}+4} + \frac{2}{a^{2}+4}

differentiating both sides wrt a a we have:- 2 I ( a ) = e a ( a s i n ( 2 ) 2 c o s ( 2 ) + s i n ( 2 ) a 2 + 4 2 a e a ( a s i n ( 2 ) 2 c o s ( 2 ) ) ( a 2 + 4 ) 2 4 a ( a 2 + 4 ) 2 \Large 2I'(a) = \frac{e^{a}(asin(2) - 2cos(2) + sin(2)}{a^{2}+4} - \frac{2ae^{a}(asin(2) - 2cos(2))}{(a^{2} + 4)^{2}} -\frac{4a}{(a^{2} + 4)^{2}}

Substitute a = 1 a = -1 to get

I ( 1 ) = 2 e + s i n ( 2 ) + 7 c o s ( 2 ) 25 e \Large I'(-1) = -\frac{-2e+sin(2) + 7cos(2)}{25e}

So our answer is 38 38

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...