Who's up to the challenge? 5

Calculus Level 5

0 1 x 4 e x sin x d x = A e B ( sin C + D cos E ) F \displaystyle\int _{ 0 }^{ 1 }{ { x }^{ 4 } { e }^{ x }\sin { x } } \, dx=\frac { Ae }{ B } (\sin { C } +D\cos { E } )-F

where A , B , C , D , E , F A,B,C,D,E,F are positive integers, and A , B A, B are coprime.

Find the minimum value of A + B + C + D + E + F A+B+C+D+E+F .


this is a part of Who's up to the challenge?


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 19, 2016

Let the integral be I I , then we have:

I = 0 1 x 4 e x sin x d x = 0 1 x 4 e x e i x d x = 0 1 x 4 e ( 1 + i ) x By integration by parts. = [ x 4 e ( 1 + i ) x 1 + i 4 x 3 e ( 1 + i ) x ( 1 + i ) 2 + 12 x 2 e ( 1 + i ) x ( 1 + i ) 3 24 x e ( 1 + i ) x ( 1 + i ) 4 + 24 e ( 1 + i ) x ( 1 + i ) 5 ] 0 1 = ( e 1 + i 1 + i 4 e 1 + i ( 1 + i ) 2 + 12 e 1 + i ( 1 + i ) 3 24 e 1 + i ( 1 + i ) 4 + 24 e 1 + i ( 1 + i ) 5 24 ( 1 + i ) 5 ) = ( e 1 + i [ 1 2 ( 1 i ) + 2 i 3 ( 1 + i ) + 6 3 ( 1 i ) ] + 3 ( 1 i ) ) = ( e ( cos 1 + i sin 1 ) ( 1 + 3 i ) 2 + 3 ( 1 i ) ) = e 2 ( sin 1 + 3 cos 1 ) 3 \begin{aligned} I & = \int_0^1 x^4 e^x \sin x \space dx \\ & = \Im \int_0^1 x^4 e^x e^{ix} \space dx \\ & = \Im \int_0^1 x^4 e^{(1+i)x} \quad \quad \small \color{#3D99F6}{\text{By integration by parts.}} \\ & = \Im \left[ \frac{x^4e^{(1+i)x}}{1+i} - \frac{4x^3e^{(1+i)x}}{(1+i)^2} + \frac{12x^2e^{(1+i)x}}{(1+i)^3} - \frac{24xe^{(1+i)x}}{(1+i)^4} + \frac{24e^{(1+i)x}}{(1+i)^5} \right]_0^1 \\ & = \Im \left( \frac{e^{1+i}}{1+i} - \frac{4e^{1+i}}{(1+i)^2} + \frac{12e^{1+i}}{(1+i)^3} - \frac{24e^{1+i}}{(1+i)^4} + \frac{24e^{1+i}}{(1+i)^5} - \frac{24}{(1+i)^5} \right) \\ & = \Im \left(e^{1+i}\left[\frac{1}{2}(1-i) + 2i - 3(1+i) + 6 - 3(1-i)\right] + 3(1-i) \right) \\ & = \Im \left( \frac{e(\cos 1 + i \sin 1)(1+3i)}{2} + 3(1-i) \right) \\ & = \frac{e}{2}(\sin 1 + 3 \cos 1 ) - 3 \end{aligned}

A + B + C + D + E + F = 1 + 2 + 1 + 3 + 1 + 3 = 11 \Rightarrow A + B + C + D + E + F = 1+2+1+3+1+3 = \boxed{11}

What is the name of this method ? @Chew-Seong Cheong

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

No specific name. I just use Euler's formula e i x = cos x + i sin x e^{ix} = \cos x+ i \sin x .

Chew-Seong Cheong - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...