where are positive integers, and are coprime.
Find the minimum value of .
this is a part of Who's up to the challenge?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the integral be I , then we have:
I = ∫ 0 1 x 4 e x sin x d x = ℑ ∫ 0 1 x 4 e x e i x d x = ℑ ∫ 0 1 x 4 e ( 1 + i ) x By integration by parts. = ℑ [ 1 + i x 4 e ( 1 + i ) x − ( 1 + i ) 2 4 x 3 e ( 1 + i ) x + ( 1 + i ) 3 1 2 x 2 e ( 1 + i ) x − ( 1 + i ) 4 2 4 x e ( 1 + i ) x + ( 1 + i ) 5 2 4 e ( 1 + i ) x ] 0 1 = ℑ ( 1 + i e 1 + i − ( 1 + i ) 2 4 e 1 + i + ( 1 + i ) 3 1 2 e 1 + i − ( 1 + i ) 4 2 4 e 1 + i + ( 1 + i ) 5 2 4 e 1 + i − ( 1 + i ) 5 2 4 ) = ℑ ( e 1 + i [ 2 1 ( 1 − i ) + 2 i − 3 ( 1 + i ) + 6 − 3 ( 1 − i ) ] + 3 ( 1 − i ) ) = ℑ ( 2 e ( cos 1 + i sin 1 ) ( 1 + 3 i ) + 3 ( 1 − i ) ) = 2 e ( sin 1 + 3 cos 1 ) − 3
⇒ A + B + C + D + E + F = 1 + 2 + 1 + 3 + 1 + 3 = 1 1