Who's up to the challenge? 6

Calculus Level 5

0 e x 3 sin x 3 d x = ( A 1 ) Γ ( B C ) D E 3 \large \displaystyle\int _{ 0 }^{ \infty }{ { e }^{ -{ x }^{ 3 } }\sin { { x }^{ 3 } } \, dx } =\dfrac { (\sqrt { A } -1)\Gamma (\frac { B }{ C } ) }{ \sqrt [ 3 ]{ { D }^{ E } } }

If the equation above holds true for positive integers A , B , C , D A,B,C,D and E E , find the minimum value of A + B + C + D + E A+B+C+D+E .


this is a part of Who's up to the challenge?


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 19, 2016

Let I I be the integral, then we have:

I = 0 e x 3 sin x 3 d x Let u = x 3 , d u = 3 x 2 d x = 0 e u sin u 3 u 2 3 d u = 0 1 3 ( u 2 3 e u e u i ) d u = 1 3 0 u 2 3 e ( 1 i ) u d u Let z = ( 1 i ) u , d z = ( 1 i ) d u = 1 3 ( ( 1 i ) 1 3 0 z 1 3 1 e z d z ) = 1 3 ( ( 2 e π 4 i ) 1 3 Γ ( 1 3 ) ) = 1 3 ( e π 12 i Γ ( 1 3 ) 2 6 ) = sin π 12 Γ ( 4 3 ) 2 6 = ( 3 1 ) Γ ( 4 3 ) 2 2 2 6 = ( 3 1 ) Γ ( 4 3 ) 2 5 3 \begin{aligned} I & = \int_0^\infty e^{-x^3} \sin x^3 \space dx \quad \quad \small \color{#3D99F6}{\text{Let } u = x^3, \space du = 3 x^2 \space dx} \\ & = \int_0^\infty \frac{e^{-u} \sin u}{3 u^{\frac{2}{3}}} du \\ & =\Im \int_0^\infty \frac{1}{3} \left(u^{-\frac{2}{3}} e^{-u} e^{ui}\right) du \\ & = \frac{1}{3} \Im \int_0^\infty u^{-\frac{2}{3}} e^{-(1-i)u} du \quad \quad \small \color{#3D99F6}{\text{Let } z = (1-i)u, \space dz = (1-i) \space du} \\ & = \frac{1}{3} \Im \left((1-i)^{-\frac{1}{3}} \int_0^\infty z^{\color{#3D99F6}{\frac{1}{3}}-1} e^{-z} dz \right) \\ & = \frac{1}{3} \Im \left( \left( \sqrt{2} e^{-\frac{\pi}{4}i} \right)^{-\frac{1}{3}} \Gamma \left(\frac{1}{3}\right) \right) \\ & = \frac{1}{3} \Im \left( \frac{e^{\frac{\pi}{12}i} \Gamma \left(\frac{1}{3}\right)}{\sqrt [6]{2}} \right) \\ & = \frac{\sin \frac{\pi}{12} \Gamma \left(\frac{4}{3}\right)}{\sqrt [6]{2}} = \frac{(\sqrt{3}-1) \Gamma \left(\frac{4}{3}\right)}{2 \sqrt{2} \sqrt [6]{2}} = \frac{(\sqrt{3}-1) \Gamma \left(\frac{4}{3}\right)}{\sqrt [3]{2^5}} \end{aligned}

A + B + C + D + E = 3 + 4 + 3 + 2 + 5 = 17 \Rightarrow A+B+C+D+E = 3+4+3+2+5 = \boxed{17}

Just a doubt!!! When u changed the variable z=(1-i )u How did the the upper limit change to inf and not (1-i )*inf

incredible mind - 5 years, 3 months ago

Log in to reply

You are right. My solution may not be valid.

Chew-Seong Cheong - 5 years, 3 months ago
Incredible Mind
Feb 25, 2016

I used differentiation under the integral sign...

can you post your solution?

Hamza A - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...