Who's up to the challenge? 7

Algebra Level 4

You're given that 1 n + 1 k = 1 \dfrac 1n +\dfrac 1k =1 and that n = 4 n=4 . If the sum i = 1 m x i n = 1296 \displaystyle\sum _{ i=1 }^{ m }{ { x }_{ i }^{ n } } =1296 and the sum i = 1 m y i k = 16 \displaystyle\sum _{ i=1 }^{ m }{ { y }_{ i }^{ k } } =16 then find the maximum value of i = 1 m x i y i \displaystyle \sum _{ i=1 }^{ m }{ { x }_{ i }{ y }_{ i } } .

Note : All x i {x}_{i} and y i {y}_{i} are non-negative real numbers.


This is a part of Who's up to the challenge?


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Raushan Sharma
Apr 25, 2016

By Holder's Inequality, we have:

i = 1 m x i 4 i = 1 m y i 4 3 i = 1 m y i 4 3 i = 1 m y i 4 3 ( i = 1 m x i y i ) 4 \displaystyle \sum_{i=1}^m { { x }_{ i }^{ 4 } } \cdot \displaystyle \sum_{i=1}^m { { y }_{ i }^{ \frac{4}{3} } } \cdot \displaystyle \sum_{i=1}^m { { y }_{ i }^{ \frac{4}{3} } }\cdot \displaystyle \sum_{i=1}^m { { y }_{ i }^{ \frac{4}{3} } } \geq (\displaystyle\sum _{ i=1 }^{ m }{ { x }_{ i }{ y }_{ i } })^4

( 1296 × 16 × 16 × 16 ) 1 4 i = 1 m x i y i \Rightarrow (1296 \times 16 \times 16 \times 16)^{\frac{1}{4}} \geq \displaystyle\sum _{ i=1 }^{ m }{ { x }_{ i }{ y }_{ i } }

48 i = 1 m x i y i \Rightarrow 48 \geq \displaystyle\sum _{ i=1 }^{ m }{ { x }_{ i }{ y }_{ i } }

Soumava Pal
Mar 22, 2016

This is the exact statement of Holder's Inequality and a special case of it yields the maximum value of the required summation to be ( 129 6 1 / 4 ) ( 1 6 1 1 4 ) = 6 8 = 48 (1296^{1/4})*(16^{1-\frac{1}{4}})=6*8=48

Exactly, I also applied Holder's Inequality. This problem is a direct application of that. (+1)

Raushan Sharma - 5 years, 1 month ago
Rohan Shinde
Dec 9, 2018

By Holder's inequality ( i = 1 m x i 4 ) 1 4 ( i = 1 m y i 4 3 ) 3 4 i = 1 m x i y i \left(\sum_{i=1}^m x_i^4\right)^{\frac 14}\left(\sum_{i=1}^m y_i^{\frac 43}\right)^{\frac 34}\ge \sum_{i=1}^m x_iy_i

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...