Who's Up To the Challenge?79

Calculus Level 5

0 1 { 1 x } { 1 1 x } ( { 1 x } + { 1 1 x } ) d x = A B ln ( C π ) D γ \int_{0}^{1}{\left\{\frac{1}{x} \right\}\left\{\frac{1}{1-x} \right\}\left( \left\{ \frac{1}{x}\right\} +\left\{ \frac{1}{1-x}\right\} \right)dx}=A-B\ln\left( C\pi \right) -D\gamma

The equation above holds true for positive integers A , B , C , D A,B,C,D . Find A + B + C + D A+B+C+D .

Notation :


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 7, 2019

A couple of substitutions y = x 1 y = x^{-1} and z = y 1 z = y^{-1} give 0 1 { 1 x } 2 { 1 1 x } d x = 1 { y } 2 { y y 1 } d y y 2 = 1 { y } 2 { 1 y 1 } d y y 2 = 0 { y + 1 } 2 { 1 y } d y ( y + 1 ) 2 = 0 { y } 2 { 1 y } d y ( y + 1 ) 2 = k = 0 0 1 y 2 { 1 y + k } d y ( y + k + 1 ) 2 = 0 1 y 2 ( y + 1 ) 2 { 1 y } d y + k = 1 0 1 y 2 ( y + k ) ( y + k + 1 ) 2 d y = 1 { z } ( z + 1 ) 2 d z z 2 + k = 1 0 1 y 2 ( y + k ) ( y + k + 1 ) 2 d y = k = 1 0 1 z ( z + k ) 2 ( z + k + 1 ) 2 d z + k = 1 0 1 y 2 ( y + k ) ( y + k + 1 ) 2 d y = k = 1 0 1 y ( y 2 + k y + 1 ) ( y + k ) 2 ( y + k + 1 ) 2 d y \begin{aligned} \int_0^1 \left\{\tfrac{1}{x}\right\}^2\left\{\tfrac{1}{1-x}\right\}\,dx & = \; \int_1^\infty \left\{y\right\}^2 \left\{\tfrac{y}{y-1}\right\}\frac{dy}{y^2} \; = \; \int_1^\infty \left\{y\right\}^2 \left\{\tfrac{1}{y-1}\right\}\,\frac{dy}{y^2} \; = \; \int_0^\infty \left\{y+1\right\}^2\left\{\tfrac{1}{y}\right\}\,\frac{dy}{(y+1)^2} \\ & = \; \int_0^\infty \left\{y\right\}^2\left\{\tfrac{1}{y}\right\}\,\frac{dy}{(y+1)^2} \; = \; \sum_{k=0}^\infty \int_0^1 y^2 \left\{\tfrac{1}{y+k}\right\}\, \frac{dy}{(y+k+1)^2} \\ & = \; \int_0^1 \frac{y^2}{(y+1)^2}\left\{\tfrac{1}{y}\right\}\,dy + \sum_{k=1}^\infty \int_0^1 \frac{y^2}{(y+k)(y+k+1)^2}\,dy \\ & = \; \int_1^\infty \frac{\left\{z\right\}}{(z+1)^2}\,\frac{dz}{z^2} + \sum_{k=1}^\infty \int_0^1 \frac{y^2}{(y+k)(y+k+1)^2}\,dy \\ & = \; \sum_{k=1}^\infty \int_0^1 \frac{z}{(z+k)^2(z+k+1)^2}\,dz + \sum_{k=1}^\infty \int_0^1 \frac{y^2}{(y+k)(y+k+1)^2}\,dy \\ & = \; \sum_{k=1}^\infty \int_0^1 \frac{y(y^2+ky+1)}{(y+k)^2(y+k+1)^2}\,dy \end{aligned} By symmetry, the desired integral is 0 1 { 1 x } { 1 1 x } ( { 1 x } + { 1 1 x } ) d x = 2 0 1 { 1 x } 2 { 1 1 x } d x = 2 lim K Z K \int_0^1 \left\{\tfrac{1}{x}\right\}\left\{\tfrac{1}{1-x}\right\}\left(\left\{\tfrac{1}{x}\right\} + \left\{\tfrac{1}{1-x}\right\}\right)\,dx \; = \; 2\int_0^1 \left\{\tfrac{1}{x}\right\}^2\left\{\tfrac{1}{1-x}\right\}\,dx \; = \; 2\lim_{K \to \infty}Z_K where Z K = k = 1 K 0 1 y ( y 2 + k y + 1 ) ( y + k ) 2 ( y + k + 1 ) 2 d y = k = 1 K ( k ( k + 2 ) ln ( k + 2 ) + ( 2 k 2 + 4 k + 1 ) ln ( k + 1 ) ( k + 1 ) 2 ln k k + 2 k + 1 ) = K ( K + 2 ) ln ( K + 2 ) + ( K 2 + 4 K + 2 ) ln ( K + 1 ) 2 ln K ! K H K + 1 + 1 \begin{aligned} Z_K & = \; \sum_{k=1}^K \int_0^1 \frac{y(y^2+ky+1)}{(y+k)^2(y+k+1)^2}\,dy \\ & = \; \sum_{k=1}^K \left(-k(k+2)\ln(k+2) + (2k^2+4k+1)\ln(k+1) - (k+1)^2\ln k - \frac{k+2}{k+1}\right) \\ & = \; -K(K+2)\ln(K+2) + (K^2+4K+2)\ln(K+1) - 2\ln K! - K - H_{K+1} + 1 \end{aligned} Now lim K S K = γ \lim_{K \to \infty}S_K = \gamma , where S K = H K ln K S_K = H_K - \ln K , and Stirling's approximation tells us that X K = O ( K 1 ) X_K = \mathrm{O}(K^{-1}) as K K \to \infty , where X K = 2 ln K ! ( 2 K + 1 ) ln ( K + 1 ) + 2 K + 2 ln ( 2 π ) X_K \; = \; 2\ln K! - (2K+1)\ln(K+1) + 2K+2 - \ln(2\pi) Now Z K = K ( K + 2 ) ln ( K + 2 ) + K ( K + 2 ) ln ( K + 1 ) + K + 3 X K S K + 1 ln ( 2 π ) = F ( K ) + 3 X K S K + 1 ln ( 2 π ) Z_K \; = \; -K(K+2)\ln(K+2)+ K(K+2)\ln(K+1) + K + 3 - X_K - S_{K+1} - \ln(2\pi) \; = \; F(K) + 3 - X_K - S_{K+1} - \ln(2\pi) where F ( K ) = K K ( K + 2 ) ln ( K + 2 K + 1 ) = ln ( K + 2 K + 1 ) + K ( K + 1 ) 2 ln ( 1 + 1 K + 1 ) = O ( K 1 ) + K ( K + 1 ) 2 ( 1 K + 1 1 2 ( K + 1 ) 2 + O ( K 3 ) ) = 1 2 + O ( K 1 ) \begin{aligned} F(K) & = \; K - K(K+2)\ln\left(\tfrac{K+2}{K+1}\right) \; = \; \ln\left(\tfrac{K+2}{K+1}\right) + K - (K+1)^2\ln\left(1 + \tfrac{1}{K+1}\right) \\ & = \; \mathrm{O}(K^{-1}) + K - (K+1)^2\left(\tfrac{1}{K+1} - \tfrac{1}{2(K+1)^2} + \mathrm{O}(K^{-3})\right) \; =\; -\tfrac12 + \mathrm{O}(K^{-1}) \end{aligned} as K K \to \infty , and hence lim K F ( K ) = 1 2 \lim_{K \to \infty}F(K) = -\tfrac12 . Thus lim K Z K = 5 2 γ ln ( 2 π ) \lim_{K \to \infty}Z_K \; = \; \tfrac52 - \gamma - \ln(2\pi) and so the desired integral is 5 2 γ 2 ln ( 2 π ) 5 - 2\gamma - 2\ln(2\pi) , making the answer 5 + 2 + 2 + 2 = 11 5 + 2 + 2 +2 = \boxed{11} .

The key observation here is symmetry, bringing about an easier integral to evaluate. Great solution!

Hamza A - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...